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Introduction

Chapter 4: Black—Scholes model

Outline

@ In the early 1970s, Fischer Black, Myron Scholes, and Robert
Merton achieved a major breakthrough in the pricing of European

Myron Scholes in their 1973 paper

» F. Black and M. Scholes, “The Pricing of Options and Corporate
Liabilities,” Journal of Political Economy, 81, 1973: 637-59.

@ Robert C. Merton was the first to publish a paper expanding the
mathematical understanding of the options pricing model, and
coined the term "Black—Scholes options pricing model".

» R.C. Merton, “Theory of Rational Option Pricing,” Bell Journal of
Economics and Management Science, 4, 1973: 141-83.

@ The model has had a huge influence on the way that traders price
and hedge derivatives.
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Introduction Introduction

FISCHER
BLACK

@ The aim of this chapter is to introduce the Black-Scholes formula

» Itis an expression for the current value of a European call option on a
stock (which pays no dividends before expiration), in a context of
instantaneous aribtrage (delta hedging with abritarily small lenght of
time).

REVOLUTIONARY

LD EA DF

FINANGE @ We will adopt an heurictic approach by deducing the formula from

the results obtained in the previous chapters.

_2‘.1??%?;? g » We will consider the same setup as in these chapters, with same
assumption, except that the lenght of time for the arbitrage (delta

hedging) will be considered as to be abritarily small.

Merton and Scholes received the 1997 Nobel Prize in Economics
(Black died in 1995).
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Introduction

@ Black and Scholes used the capital asset pricing model (CAPM) to
determine a relationship between the market’s required return on
the option to the required return on the stock.
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» This was not easy because the relationship depends on both the 9 Heuristic Approach
stock price and time. @ Coming Back to the One-Period Binomial Model
@ Merton’s approach was more general than that of Black and @ Coming Back to the n-Period Binomial Model
Scholes because it did not rely on the assumptions of the CAPM. @ Volatility Erodes Return
» Itinvolved setting up a riskless portfolio consisting of the option and @ From Binomial to Normal distribution

the underlying stock and arguing that the return on the portfolio over
a short period of time must be the risk-free return.

» It derives the Black-Scholes-Merton model from a binomial tree by
valuing a European option on a non- dividend-paying stock and
allowing the number of time steps in the binomial tree to approach
infinity.

» The proof is relegated to the Appendix.
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Coming Back to the One-Period Binomial Model Coming Back to the One-Period Binomial Model

@ So, CY = uSy — K and C¢ = 0. We can rewrite the previous call

@ Consider a call option on a stock, with initial price Sg, with exercise . . .
price formula like this:

price K, and maturing at time 1.

@ In Chapter 2 (Proposition 2.5) we saw that the absence of arbitrage Co— quSo—K) [ qu S _ K
opportunities (NAO) implies that the current value of the call must 0~ 14+r “\14r)° q1 +r
be
Q u _ d
Co = I% EFC;] = 9% +1(1+ P 9 @ The factor % equals the factor by which the discounted expected
value of contingent receipt of the stock exceeds the current value of
where Q such that g = % is the equivalent martingale measure. the stock.

) ) ) ) ) @ Reasonning with continuous coupounding we would have
@ When d < r < u the option will be exercised if the stock price goes

up (S1 = uSp), and it will expire worthless if the stock price goes Co=(e7"qu) So—qe 'K
down (81 = dSo)
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Coming Back to the n-Period Binomial Model Coming Back to the n-Period Binomial Model

@ Reasonning with continuous coupounding we would have
@ Consider now that the call option matures at time T for which there

are n intermediate market valuations of the stock. -~ " /n _ n—
. N Coze’TZ<>qk(1—q)”kC¥kd "
@ In Chapter 3 we saw that the absence of arbitrage opportunities o k

(NAQO) implies that the current value of the call must be
@ When d < r < u there is a minimum number of upward moves

EC[Cr] & (N)gk(1—q)" k™ necessary for the option to be exercised.
0 — n = Z n \ ..
1+ = (1+7r) » We say that the option is in the money.
» Let a denotes this minimum number.

atimes (St > u?d"4Sy), and it will expire worthless if the stock price
goes down by less than a times(St < u?d"2S).

Jérdbme MATHIS (LEDa) Arbitrage&Pricing Chapter 4 11/59 Jérome MATHIS (LEDa) Arbitrage&Pricing Chapter 4 12/59



Heuristic Approach

Coming Back to the n-Period Binomial Model

ukd"kSy —Kifk > a
0 otherwise
@ Hence, we can rewrite the previous call price formula like this:

Co = e—rTEH: <Z> g (1—q)"* (ukdn—kso _ K) '
k=a
- (e‘” > ey (@ (@1 q))"—k> So
k=a ’

n
_ n! k(4 _ ~\n—k o—rT
kz:;k!(n—k)!q (1=q)y e ™K

@ So, CY'd"™" = {
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Heuristic Approach

Volatility Erodes Return

@ Consider S; =100, u =1.1,and d = 0.9.

» What is the value of S§9?
> What is the value of S¥"@*2

@ Compute now the same values for u = 1.3, and d = 0.7.

» What do you obtain?
» Conclude.

Property
Volatility erodes returns.

Jérome MATHIS (LEDa) Arbitrage&Pricing Chapter 4 14 /59

Heuristic Approach
From Binomial to Normal distribution
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Heuristic Approach

From Binomial to Normal distribution
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From Binomial to Normal distribution

S&P500 - weekly Return Histogram (1928 - 2018)
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From Binomial to Normal distribution

S&P 500 Index - monthly Return Histogram (1928-2018)
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Heuristic Approach

@ In the following, we will use the cumulative probability distribution
function for a standardized normal distribution, denoted as N (x)

@ N(x) is then the probability that a variable with a standard normal
distribution will be less than x.

Shaded area represents N(x).
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From Binomial to Normal distribution From Binomial to Normal distribution

<

S A

m

o ] @ Taking into account that volatility erodes returns, we will use that if
the log return of a stock price is normally distributed then its mean

S - 34.1% 34.1% is not r but is instead (r — 302).

- » Said differently, for a normal distribution, volatility erodes returns

o about half the variance.

o

S -

Heuristic Approach Heuristic Approach
Log return normally distributed Log return normally distributed
@ Black-Scholes assume that the stock price at time T (and any ek .
subsequent time ¢, replacing T with t) is ©
St = SoR(T) .
where the log return of the stock price is normally distributed under . iy
the equivalent martingale measure Q, with mean (r — %02) T and 1
variance o2T: L
1
In R(T) ’Q N <<r - 502> T? 02T> © Yahao! 20
@ It means that: T i
» the expected returns are independent of the stock price; 100 g
» the stock price only takes positive values; o
» the stock price is continuous everywhere but differentiable nowhere. ¥ Diisons
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Log return normally distributed Log return normally distributed
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Heuristic Approach Heuristic Approach
Log return normally distributed Black-Scholes Formula
@ In an attempt to make the model for stock prices more realistic, @ In this setup, the absence of arbitrage opportunities (NAO) implies
some papers drop the assumption that the volatility is constant. that the current value of the call must be

» A model that assumes that the volatility is a deterministic function of

— o TRQ
the stock price and time is called local volatility model. Co =€ " E*[Cr]

@ From

o
& -
s

ST—KifST>K

_(Se — K)t —
Cr=(S1-K)" = { 0 otherwise

o
g
<

we have

015

Co = e BY(St—K)']
e_’TE@[ST — K‘ST > K]
e~ (BYISr|ST > K] - BUIK|ST > K])
e "TEQ[S7|ST > K] — e "TKQ[ST > K]

010

005

0.00
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Black-Scholes Formula Black-Scholes Formula
@ Let us first compute Q[St > K]. @ Now, let us denote NV (x) := P[X < x] when X N (0,1).
» From Sr = SoR(T) we have » So we have
InS7 =InSo +InR(T). PIX > x] =1 - N(x) = P[X < —x] = N(—x)
> From 1 » Using that St > K is equivalent to
|nR(T)ﬁ(%N<(r——o2> T,02T> s '
2 NSy — (INSo+ (r—30%)T) _ InK — (InSo + (r — 30?) T)
we have 1 2T > =T
InSy N (m So + (r — 50—2> T,JZT) » We obtain
» So, INnK — (InSq + (r— 363 T
InSr — E[InS7] ¢ QST > K]=N| - (S 2( :2)T)
— " <X N(0,1) o?T
\/V[In ST]
> Thatis » Thatis S 4 (- 10?)
|nST—(|nSO+(r—%0'2)T)Q QS S Kl =N |n70+ r—EO' T
= SNE). o1 =K T
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Heuristic Approach

Black-Scholes Formula

@ Now let us compute EQ[S7|ST > K]. @ Hence, according to the Property we have
Propert NS+ (r440®) T
perty . EQ[ST\ST>K]:SOerT./\/< 7+ ( :‘20)
IFInX ~ N (1,52) then E[X|X > K] = et 2 A7 (1£2nK) T
@ Therefore
@ Using this Property, with Co = e TE[ST|ST > K] — e "TKQ[ST > K].
NSy XN (In So+ (r — %(72) T, 02T> with
- NS+ (r+ 102 T
we have eu+% :eln80+(r—%02)T+§ —ginSo+rT :SoerT and e rTEQ[SﬂST > K] = So/\/( K (027_2 )
1
p,+szs—InK _ InSo+(r—§az)277'_+02T—InK and ) .
Vo N2+ (r—50%) T
_ K 2
_ InSe + (r+30?) T Q[ST>K]_N< 02T )
02T
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Heuristic Approach

Black-Scholes Formula

@ We are now able to state the Black-Scholes Formula.

Theorem (Black-Scholes-Merton Formula for Call Option)

The price of European call, Cy, write as

Co = SoN(d1) — Ke_rTN(dz)

where ,
_ @)+ + )T

VT

and
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e Example
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Heuristic Approach

Black-Scholes Formula

@ Similarly, with the same d4 and d, of the previous Theorem, we
have obtain the price of a Put with similar characteristics.

Corollary (Black-Scholes-Merton Formula for Put Option)

The price of European put, Py, write as

Py = Ke ™" N'(—dy) — SoN(—d4)
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The stock price 6 months from the expiration of an European option is
$42, the exercise price of the option is $40, the risk-free interest rate is
10% per annum, and the volatility is 20% per annum.

What are the values of the European call and put?
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o Conclusion
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Conclusion

@ According to the Black-Scholes Formula, the prices of European
call, Cy, and European put, Py, on a non dividend paying stock with
initial price Sy, and volatility o, with a strike K and maturity T, when
the risk-free interest rate is r write as

Co = SoN(dy) — Ke ™" N (d»)

Chapter 4: Black—Scholes model

Outline

and
Py = Ke " N (—dz) — SoN(—d4)

where N/ (-) denotes the cumulative probability distribution function
for a standardized normal distribution,

(@) +(r+ )T

di =
ovT © Appendix
and
IN(52) + (r — )T
d2 = = d1 — 0oV T
ovT
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Proving the Black-Scholes-Merton Result

@ Suppose that a tree with n time steps is used to value a European
call option with strike price K and life T.

» Each step is of length L.
» If there have been j upward movements and n — j downward
movements on the tree, the final stock price is

Appendix Sottd"™!

where u is the proportional up movement, d is the proportional down
movement, and S; is the initial stock price.
» The payoff from a European call option is then

max(Sot/d" — K, 0).

@ From the properties of the binomial distribution, the probability of
exactly j upward and n — j downward movements is given by

(n_n—lj)lj'P/(1 —p)"™?
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Proving the Black-Scholes-Merton Result Proving the Black-Scholes-Merton Result

@ [t follows that the expected payoff from the call option is

n | @ The option is in the money when the final stock price is greater than
Z ﬁp’ﬁ —p)" 7 max(Se/d" 7 — K,0) the strike price, that is, when
— (n — j)lj!
j=0 . .
Sot/d" ! > K
@ As the tree represents movements in a risk-neutral world, we can

discount this at the risk-free rate r to obtain the option price: or

In (%) > —jIn(u) — (n—j)In(d)

c=e"T>" (n—n—_!/')lj|pj(1 —p)" I max(Se/d" 7 — K,0) (1)
= H
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Proving the Black-Scholes-Merton Result Proving the Black-Scholes-Merton Result

. oy/I _a\ﬁ . "
@ Sinceu=e"Vrnandd =e . this condition becomes

@ Equation (1) can therefore be written

So . T ) IT
I —JO0 —_— — — —0 —
" <K> > =l n) c= e‘rTZ—(n _r)!j.)!j!p’(1 —p)"I(Sod" — K)

that is J>a
In (&) > no I _ 2]0- I where
K V n V n , I (%)
or a=z- =
S T
o () 20,/T
/=5

20

=
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Proving the Black-Scholes-Merton Result

@ For convenience, we define

Proving the Black-Scholes-Merton Result

Consider U_{2}

@ As is well known, the binomial distribution approaches a normal

nl . e
Ui = Z mpjm —p)Id™! distribution as the number of trials approaches infinity.

/> » Specifically, when there are n trials and p is the probability of

and success, the probability distribution of the number of successes is
n! i _ approximately normal with mean np and standard deviation
U, = —p(1—=p)"!
? ; (n —j)!j!pj( P) Vnp(1 = p).
that @ U, is the probability of the number of successes being more than «.
so tha . e
ce'T (SoUs — KUy). ) 9 I:]r%rz ;he properties of the normal distribution, it follows that, for
@ Both U and U, can now be evaluated in terms of the cumulative np — o

binomial distribution. Uz = np(1 — p)

@ We now let the number of time steps tend to infinity and use the

result that a binomial distribution tends to a normal distribution. where N is the cumulative normal distribution function.
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Proving the Black-Scholes-Merton Result Proving the Black-Scholes-Merton Result

Consider U_{2} Consider U_{2}

@ From (see Chapter 11)

u=e° At
_ a—oVAt
@ Substituting for o, we obtain d=e
and
So rat _
W LG I ) ,_ ot -d
Uz =N T u—d
20VT\/p(1=p)  /p(1—p) A Tuan
wi = -+ we have
e’ — e_gﬁ

p =
e"\/; - e“’ﬁ
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Proving the Black-Scholes-Merton Result Proving the Black-Scholes-Merton Result

Consider U_{2} Consider U_{1}

@ By expanding the exponential functions in a series, we see that, as

n tends to infinity, p(1 — p) tends to § and y/n(p — 3) tends to o U rewrites as
! . ,
(r_%z)ﬁ U, = n—pU 1—pd”_/
so that in the limit, as n tends to infinity, we finally obtain @ Define
) pu
pr= 3)
In (%)Hr—%z)r pu+ (1—p)d
Up=N = N(d2)
oV'T
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Proving the Black-Scholes-Merton Result Proving the Black-Scholes-Merton Result
Consider U_{1} Consider U_{1}

@ |t then follows that

_ @ Since the expected return in the risk-neutral world is the risk-free
1—p" = _(=pyd rate r, it follows that
pu+(1—p)d ’
and [pu+(1—p)d]" =eT
n! i and
Up = ) = (" (pu+(1-p)d)y n! - :
[(1=p") (pu+ (1 = p)d)]™ -
| _ , @ This shows that U, involves a binomial distribution where the
n n!
= [pu+(1-p)d] Z m (p*Y (1—p*)"~ probability of an up movement is p* rather than p.

j>a
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Proving the Black-Scholes-Merton Result Proving the Black-Scholes-Merton Result

Consider U_{1} Consider U_{1}

@ Substituting for u and d in equation in equation (3) gives

T T
@ Approximating the binomial distribution with a normal distribution, pt = et —e "V e”\g
. = T
we obtain ) e"ﬁ B e_"\/; o't
Ui—e™N [P -
1= np* (1 — p*) @ By expanding the exponential functions in a series we see that, as n
and substituting for a gives for U tends to infinity, p*(1 — p*) tends to 7 and /n(p — 5) tends to
o2
in ($2) . (r+ VT
U2 — erTN K + \/ﬁ(p — ?) 20
20VT\/p*(1—p*) p*(1—-p*) with the result that
In(32) + (r+ )T
U1 :erTN (K) 2 :erTN(d1)
oVT

Proving the Black-Scholes-Merton Result

@ Finally, from equation (2) we have
c=e"T (SoU1 — KU2)

that is
c = SoN(dq) — Ke "N (dy).

QED.
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