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Exercise (1)

Let x denote a rate that is quaterly compounded in actual/360. Let z
denote the equivalent rate that is continuously compounded in
actual/365.

a) Compute z by first transforming x in a rate y that is continuously
compounded rate in actual/360.

b) Compute z by first transforming x in a rate y’ that is quaterly
compounded rate in actual/365.

¢) Compare the values obtained in a) and b) when x = 25%. Compare
it again when x = 2.5%. Conclude.
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Exercise (1)

a) Compute z by first transforming x in a rate y that is continuously
compounded rate in actual/360.

v

Solution (1)
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Exercise (1)

a) Compute z by first transforming x in a rate y that is continuously
compounded rate in actual/360.

v

Solution (1)

a) The rate y satisfies
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Exercise (1)

a) Compute z by first transforming x in a rate y that is continuously
compounded rate in actual/360.

| A

Solution (1)
a) The rate y satisfies

<1+%>4:ey <:>y:4ln(1+§>.
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Exercise (1)

a) Compute z by first transforming x in a rate y that is continuously
compounded rate in actual/360.

| A

Solution (1)
a) The rate y satisfies

<1+%>4:ey <:>y:4ln(1+§>.

The rate z then satisfies

~ Z
y N

~—
actual /360 actual /365

that is

Jérdme MATHIS (LEDa) Derivative Instruments Exercises + Solutions Chapter 6 3/20



Exercise (1)

a) Compute z by first transforming x in a rate y that is continuously
compounded rate in actual/360.

| A

Solution (1)
a) The rate y satisfies
X\4 X
Z) — Y — =
(1+4) e =y 4In(1+4>.

The rate z then satisfies

~ Z
y N

~—
actual /360 actual /365

that is

- x@_xx@_@x.nmi)
—Y\360) 90 24" 90 ~ 90 7))
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Exercise (1)

b) Compute z by first transforming x in a rate y’ that is quaterly
compounded rate in actual/365.

v

Solution (1)

b) The rate y’ satisfies

R R EEE==————S——————————
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Exercise (1)

b) Compute z by first transforming x in a rate y’ that is quaterly
compounded rate in actual/365.

| \

Solution (1)
b) The rate y’ satisfies
4 I\ 4
<1+%> ~(1+L) = X ~ y
——

4 |/360
actua actual /365
actual /360 actual /365 !

so that

R R EEE==————S——————————
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Exercise (1)

b) Compute z by first transforming x in a rate y’ that is quaterly
compounded rate in actual/365.

| A\

Solution (1)
b) The rate y’ satisfies

<1+%>4~(1+L’)4<:> X ~ vy
-~

4 tual /360
actual /360 B actua actual /365
so that
'=x 50 X 365 _ X X 365
Y =X\ 360 90 360

R R EEE==————S——————————
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Exercise (1)

b) Compute z by first transforming x in a rate y’ that is quaterly
compounded rate in actual/365.

| \

Solution (1)
b) The rate y’ satisfies

X\ 4 "\
(1 + —> ~(1+1) = x ~ y'

4 4 —~—
————— actual/360  actual /365

actual /360 actual /365
so that
7t 90 % 98 X X 365
y = 360 90 360

The rate z then satisfies

R R EEE==————S——————————
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Exercise (1)

b) Compute z by first transforming x in a rate y’ that is quaterly
compounded rate in actual/365.

| \

Solution (1)
b) The rate y’ satisfies

@A) -(0%) = a -
E¥)

4 tual /360
actual /360 B actua actual /365
so that
'=x 50 X 365 _ X X 365
Y =X\ 360 90 360

The rate z then satisfies

4 /
Y\ e _ A x 365
(1+4) —=e <:>z_4ln(1+4)_4ln(1+4360
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¢) Compare the values obtained in a) and b) when x = 25%. Compare
it again when x = 2.5%. Conclude.

Solution (1)
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¢) Compare the values obtained in a) and b) when x = 25%. Compare
it again when x = 2.5%. Conclude.

Solution (1)
c) In a) we have
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¢) Compare the values obtained in a) and b) when x = 25%. Compare
it again when x = 2.5%. Conclude.

Solution (1)

c) In a) we have
_ 365

Za=gg xIn (1+§)

while in b) we have
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¢) Compare the values obtained in a) and b) when x = 25%. Compare
it again when x = 2.5%. Conclude.

Solution (1)
c) In a) we have

365 X
Za="g5 xIn(1+7)
while in b) we have
X 365
Zn = 41In <1+ Z%)
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¢) Compare the values obtained in a) and b) when x = 25%. Compare
it again when x = 2.5%. Conclude.

Solution (1)

c) In a) we have
_ 365

za_wxln(lJrg)

while in b) we have

4 360

Let f (x) denote the difference between the two results:

Z, =4In <1+5§>
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¢) Compare the values obtained in a) and b) when x = 25%. Compare
it again when x = 2.5%. Conclude.

Solution (1)

c) In a) we have
365

za_wxln(lJrg)

while in b) we have

4 360

Let f (x) denote the difference between the two results:

365 X X 365
f(x) ::za—zb:%xln <1+Z> —4lIn (1+Zﬁ)

Z, =4In <1+5§>
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Exercise (1)

¢) Compare the values obtained in a) and b) when x = 25%. Compare
it again when x = 2.5%. Conclude.

V.

Solution (1)

We have

Jérdme MATHIS (LEDa) Derivative Instruments Exercises + Solutions Chapter 6 6/20



Exercise (1)

¢) Compare the values obtained in a) and b) when x = 25%. Compare
it again when x = 2.5%. Conclude.

| \

Solution (1)
We have

f(0.25) ~ —1.0139 x 107* > —1.0910 x 10°® ~ f (0.025)
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Exercise (1)

¢) Compare the values obtained in a) and b) when x = 25%. Compare
it again when x = 2.5%. Conclude.

Solution (1)
We have

| \

f(0.25) ~ —1.0139 x 107* > —1.0910 x 10°® ~ f (0.025)

This comes from the approximation of the continously compounding
rate that is obtained from the Taylor’s serie. The lower the rate the
more accurate is the approximation.
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Exercise (2)

It is January 9. The price of a Treasury bond with a 12% coupon that
matures on October 12, in four years, is quoted as 102-07.

What is the cash price?

v

Solution (2)

V
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Exercise (2)
It is January 9. The price of a Treasury bond with a 12% coupon that
matures on October 12, in four years, is quoted as 102-07.

What is the cash price?

| A

Solution (2)
The last coupon has been paid on October 12 of the last year.

V
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Exercise (2)

It is January 9. The price of a Treasury bond with a 12% coupon that
matures on October 12, in four years, is quoted as 102-07.

What is the cash price?

| A

Solution (2)

The last coupon has been paid on October 12 of the last year.
The next coupon will be paid on April 12 of the current year.

V
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Exercise (2)

It is January 9. The price of a Treasury bond with a 12% coupon that
matures on October 12, in four years, is quoted as 102-07.

What is the cash price?

| A

Solution (2)

The last coupon has been paid on October 12 of the last year.

The next coupon will be paid on April 12 of the current year.

Between October 12 (last year) and January 9 (current year), there are

V
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Exercise (2)

It is January 9. The price of a Treasury bond with a 12% coupon that
matures on October 12, in four years, is quoted as 102-07.

What is the cash price?

| A

Solution (2)

The last coupon has been paid on October 12 of the last year.

The next coupon will be paid on April 12 of the current year.

Between October 12 (last year) and January 9 (current year), there are
89 days.

4
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Exercise (2)

It is January 9. The price of a Treasury bond with a 12% coupon that
matures on October 12, in four years, is quoted as 102-07.

What is the cash price?

| A

Solution (2)

The last coupon has been paid on October 12 of the last year.

The next coupon will be paid on April 12 of the current year.

Between October 12 (last year) and January 9 (current year), there are
89 days.
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Exercise (2)

It is January 9. The price of a Treasury bond with a 12% coupon that
matures on October 12, in four years, is quoted as 102-07.

What is the cash price?

| A

Solution (2)

The last coupon has been paid on October 12 of the last year.

The next coupon will be paid on April 12 of the current year.

Between October 12 (last year) and January 9 (current year), there are
89 days.

Between October 12 (last year) and April 12 (current year), there are
182 days.

4
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Exercise (2)

It is January 9. The price of a Treasury bond with a 12% coupon that
matures on October 12, in four years, is quoted as 102-07.

What is the cash price?

| A

Solution (2)

The last coupon has been paid on October 12 of the last year.

The next coupon will be paid on April 12 of the current year.

Between October 12 (last year) and January 9 (current year), there are
89 days.

Between October 12 (last year) and April 12 (current year), there are
182 days.

The cash price of the bond is obtained by adding the accrued interest
to the quoted price.

The quoted price is 102 or

4
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Exercise (2)

It is January 9. The price of a Treasury bond with a 12% coupon that
matures on October 12, in four years, is quoted as 102-07.

What is the cash price?

| A

Solution (2)

The last coupon has been paid on October 12 of the last year.

The next coupon will be paid on April 12 of the current year.

Between October 12 (last year) and January 9 (current year), there are
89 days.

Between October 12 (last year) and April 12 (current year), there are
182 days.

The cash price of the bond is obtained by adding the accrued interest
to the quoted price.

The quoted price is 1025 or 102.21875.

The cash price is therefore

4
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Exercise (2)

It is January 9. The price of a Treasury bond with a 12% coupon that
matures on October 12, in four years, is quoted as 102-07.

What is the cash price?

| A

Solution (2)

The last coupon has been paid on October 12 of the last year.

The next coupon will be paid on April 12 of the current year.

Between October 12 (last year) and January 9 (current year), there are
89 days.

Between October 12 (last year) and April 12 (current year), there are
182 days.

The cash price of the bond is obtained by adding the accrued interest
to the quoted price.

The quoted price is 1025 or 102.21875.

The cash price is therefore 102.21875 + 55 x 6 = $105.15

4

Jéréme MATHIS (LEDa) Derivative Instruments Exercises + Solutions Chapter 6 7120



Exercise (3)

A Eurodollar futures price changes from 96.76 to 96.82.

What is the gain or loss to an investor who is long two contracts?

v

Solution (3)
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Exercise (3)

A Eurodollar futures price changes from 96.76 to 96.82.

What is the gain or loss to an investor who is long two contracts?

| A

Solution (3)

The Eurodollar futures price has increased by 6 basis points.
The investor makes a gain per contract of 25 x 6 = $150 or $300 in
total.

”
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Exercise (4, Done)

The 350-day LIBOR rate is 3% with continuous compounding and the
forward rate calculate from a Eurodollar futures contract that matures
in 350 days is 3.2% with continuous compounding.

Estimate the 440-day zero rate.

Solution (4)

\ | \
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Exercise (4, Done)

The 350-day LIBOR rate is 3% with continuous compounding and the
forward rate calculate from a Eurodollar futures contract that matures
in 350 days is 3.2% with continuous compounding.

Estimate the 440-day zero rate.

| A\

Solution (4)
We have

\
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Exercise (4, Done)

The 350-day LIBOR rate is 3% with continuous compounding and the
forward rate calculate from a Eurodollar futures contract that matures
in 350 days is 3.2% with continuous compounding.

Estimate the 440-day zero rate.

| A\

Solution (4)
We have
R, — F1(To —Ty1) +R1Ty
2= T .
2

\
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Exercise (4, Done)

The 350-day LIBOR rate is 3% with continuous compounding and the
forward rate calculate from a Eurodollar futures contract that matures
in 350 days is 3.2% with continuous compounding.

Estimate the 440-day zero rate.

Solution (4)
We have

| A\

Fi(T2—T1) +R1Ty

R, —
2 T,

with F, = 3.2%, T, =

\
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Exercise (4, Done)

The 350-day LIBOR rate is 3% with continuous compounding and the
forward rate calculate from a Eurodollar futures contract that matures
in 350 days is 3.2% with continuous compounding.

Estimate the 440-day zero rate.

| A\

Solution (4)
We have

Fi(T2—T1) +R1Ty

R, —
2 T,

with F, = 3.2%, T, =350, T, =

\
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Exercise (4, Done)

The 350-day LIBOR rate is 3% with continuous compounding and the
forward rate calculate from a Eurodollar futures contract that matures
in 350 days is 3.2% with continuous compounding.

Estimate the 440-day zero rate.

| A\

Solution (4)
We have

Fi(T2—T1) +R1Ty
T, ‘
with F; = 3.2%, T, — 350, T, — 440, and Ry —

R, =

\
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Exercise (4, Done)

The 350-day LIBOR rate is 3% with continuous compounding and the
forward rate calculate from a Eurodollar futures contract that matures
in 350 days is 3.2% with continuous compounding.

Estimate the 440-day zero rate.

| A\

Solution (4)
We have

Fi(T2—T1) +R1Ty
T, ‘
with F; = 3.2%, T; = 350, T, = 440, and R; = 3%. So

R, =

Ry =

\
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Exercise (4, Done)

The 350-day LIBOR rate is 3% with continuous compounding and the
forward rate calculate from a Eurodollar futures contract that matures
in 350 days is 3.2% with continuous compounding.

Estimate the 440-day zero rate.

| N\

Solution (4)
We have

Fi(T2—T1) +R1Ty
T, ‘
with F; = 3.2%, T; = 350, T, = 440, and R; = 3%. So

R, =

_3.2% x 90 + 3% x 350

R 440

= 3.0409%.
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Exercise (5)

It is January 30. You are managing a bond portfolio worth $6 million.
The duration of the portfolio in six months will be 8.2 years. The
September Treasury bond futures price is currently 108-15, and the
cheapest-to-deliver bond will have a duration of 7.6 years in
September.

How should you hedge against changes in interest rates over the next
six months?

| A\

Solution (5)
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Exercise (5)

It is January 30. You are managing a bond portfolio worth $6 million.
The duration of the portfolio in six months will be 8.2 years. The
September Treasury bond futures price is currently 108-15, and the
cheapest-to-deliver bond will have a duration of 7.6 years in
September.

How should you hedge against changes in interest rates over the next
six months?

| A\

Solution (5)
The value of a contract is
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Exercise (5)

It is January 30. You are managing a bond portfolio worth $6 million.
The duration of the portfolio in six months will be 8.2 years. The
September Treasury bond futures price is currently 108-15, and the
cheapest-to-deliver bond will have a duration of 7.6 years in
September.

How should you hedge against changes in interest rates over the next
six months?

| A

Solution (5)
The value of a contract is

15
108§ x 1,000 =
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Exercise (5)

It is January 30. You are managing a bond portfolio worth $6 million.
The duration of the portfolio in six months will be 8.2 years. The
September Treasury bond futures price is currently 108-15, and the
cheapest-to-deliver bond will have a duration of 7.6 years in
September.

How should you hedge against changes in interest rates over the next
six months?

| A

Solution (5)
The value of a contract is

1085 x 1,000 = $108, 468.75.

The number of contracts that should be shorted is
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Exercise (5)

It is January 30. You are managing a bond portfolio worth $6 million.
The duration of the portfolio in six months will be 8.2 years. The
September Treasury bond futures price is currently 108-15, and the
cheapest-to-deliver bond will have a duration of 7.6 years in
September.

How should you hedge against changes in interest rates over the next
six months?

| A

Solution (5)
The value of a contract is

1085 x 1,000 = $108, 468.75.

The number of contracts that should be shorted is

6,000,000 8.2
108,468.757.6

Jérdme MATHIS (LEDa) Derivative Instruments



Exercise (5)

It is January 30. You are managing a bond portfolio worth $6 million.
The duration of the portfolio in six months will be 8.2 years. The
September Treasury bond futures price is currently 108-15, and the
cheapest-to-deliver bond will have a duration of 7.6 years in
September.

How should you hedge against changes in interest rates over the next
six months?

| A

Solution (5)
The value of a contract is

1085 x 1,000 = $108, 468.75.

The number of contracts that should be shorted is

6,000, 000 8.2

108.468.757.6 S
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Exercise (5)

It is January 30. You are managing a bond portfolio worth $6 million.
The duration of the portfolio in six months will be 8.2 years. The
September Treasury bond futures price is currently 108-15, and the
cheapest-to-deliver bond will have a duration of 7.6 years in
September.

How should you hedge against changes in interest rates over the next
six months?

Solution (5)

\ | \
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Exercise (5)

It is January 30. You are managing a bond portfolio worth $6 million.
The duration of the portfolio in six months will be 8.2 years. The
September Treasury bond futures price is currently 108-15, and the
cheapest-to-deliver bond will have a duration of 7.6 years in
September.

How should you hedge against changes in interest rates over the next
six months?

| A\

Solution (5)
Rounding to the nearest whole number,

\
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Exercise (5)

It is January 30. You are managing a bond portfolio worth $6 million.
The duration of the portfolio in six months will be 8.2 years. The
September Treasury bond futures price is currently 108-15, and the
cheapest-to-deliver bond will have a duration of 7.6 years in
September.

How should you hedge against changes in interest rates over the next
six months?

| A\

Solution (5)

Rounding to the nearest whole number, 60 contracts should be
shorted. The position should be closed out at the end of

\
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Exercise (5)

It is January 30. You are managing a bond portfolio worth $6 million.
The duration of the portfolio in six months will be 8.2 years. The
September Treasury bond futures price is currently 108-15, and the
cheapest-to-deliver bond will have a duration of 7.6 years in
September.

How should you hedge against changes in interest rates over the next
six months?

| A\

Solution (5)

Rounding to the nearest whole number, 60 contracts should be
shorted. The position should be closed out at the end of July.

\
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Exercise (6)

Suppose that the Treasury bond futures price is 101-12. Which of the
following four bonds is cheapest to deliver?

Bond | Price | Conversion Factor
1 125-05 1.2131
2 142-15 1.3792
3 115-31 1.1149
4 144-02 1.4026

| A\

Solution (6)
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Suppose that the Treasury bond futures price is 101-12. Which of the
following four bonds is cheapest to deliver?

Bond | Price | Conversion Factor
1 125-05 1.2131
2 142-15 1.3792
3 115-31 1.1149
4 144-02 1.4026

| A

Solution (6)
The cheapest-to-deliver bond is the one for which
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Exercise (6)

Suppose that the Treasury bond futures price is 101-12. Which of the
following four bonds is cheapest to deliver?

Bond | Price | Conversion Factor
1 125-05 1.2131
2 142-15 1.3792
3 115-31 1.1149
4 144-02 1.4026

| A

Solution (6)
The cheapest-to-deliver bond is the one for which

Quoted Price - Futures Price x Conversion Factor

is least.
Calculating this factor for each of the 4 bonds we get:

Bond 1: 125.15625 — 101.375 x 1.2131 = 2.178
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Exercise (6)

Suppose that the Treasury bond futures price is 101-12. Which of the
following four bonds is cheapest to deliver?

Bond | Price | Conversion Factor
1 125-05 1.2131
2 142-15 1.3792
3 115-31 1.1149
4 144-02 1.4026

Solution (6)
The cheapest-to-deliver bond is the one for which

| A

Quoted Price - Futures Price x Conversion Factor

is least.
Calculating this factor for each of the 4 bonds we get:

Bond 1:
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Exercise (6)

Suppose that the Treasury bond futures price is 101-12. Which of the
following four bonds is cheapest to deliver?

Bond | Price | Conversion Factor
1 125-05 1.2131
2 142-15 1.3792
3 115-31 1.1149
4 144-02 1.4026

| A

Solution (6)
The cheapest-to-deliver bond is the one for which

Quoted Price - Futures Price x Conversion Factor

is least.
Calculating this factor for each of the 4 bonds we get:

Bond 1: 125.15625 — 101.375 x 1.2131 =
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Exercise (6)

Suppose that the Treasury bond futures price is 101-12. Which of the
following four bonds is cheapest to deliver?

Bond | Price | Conversion Factor
1 125-05 1.2131
2 142-15 1.3792
3 115-31 1.1149
4 144-02 1.4026

| A

Solution (6)
The cheapest-to-deliver bond is the one for which

Quoted Price - Futures Price x Conversion Factor

is least.
Calculating this factor for each of the 4 bonds we get:

Bond 1: 125.15625 — 101.375 x 1.2131 = 2.178
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Solution (6)

Bond 2:
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Solution (6)

Bond 2: 142.46875 — 101.375 x 1.3792 =
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Solution (6)

Bond 2: 142.46875 — 101.375 x 1.3792 = 2.652

Bond 3:
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Solution (6)

Bond 2: 142.46875 — 101.375 x 1.3792 = 2.652

Bond 3: 115.96875 — 101.375 x 1.1149 =
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Solution (6)
Bond 2: 142.46875 — 101.375 x 1.3792 = 2.652

Bond 3: 115.96875 — 101.375 x 1.1149 = 2.946

Bond 4:
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Solution (6)
Bond 2: 142.46875 — 101.375 x 1.3792 = 2.652

Bond 3: 115.96875 — 101.375 x 1.1149 = 2.946

Bond 4: 144.06250 — 101.375 x 1.4026 =
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Solution (6)

Bond 2: 142.46875 — 101.375 x 1.3792 = 2.652
Bond 3: 115.96875 — 101.375 x 1.1149 = 2.946

Bond 4: 144.06250 — 101.375 x 1.4026 = 1.874
Bond
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Solution (6)

Bond 2: 142.46875 — 101.375 x 1.3792 = 2.652
Bond 3: 115.96875 — 101.375 x 1.1149 = 2.946

Bond 4: 144.06250 — 101.375 x 1.4026 = 1.874

Bond 4 is therefore the cheapest to deliver.
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Exercise (7)

Suppose that the 300-day LIBOR zero rate is 4% and Eurodollar
quotes for contracts maturing in 300, 398 and 489 days are 95.83,
95.62, and 95.48.

Calculate 398-day and 489- day LIBOR zero rates.

Assume no difference between forward and futures rates for the
purposes of your calculations.

(Hint: The forward rates calculated form the Eurodollar futures are
expressed with an actual/360 day count and quarterly compounding.
The use of our formula then require these rates to be expressed with
continuous compounding and an actual/365 day count)
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Solution (7)

The forward rates calculated form the first two Eurodollar futures are
4.17% and 4.38%.
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Solution (7)
The forward rates calculated form the first two Eurodollar futures are

4.17% and 4.38%.
These are expressed with an actual/360 day count and quarterly

compounding.
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Solution (7)

The forward rates calculated form the first two Eurodollar futures are
4.17% and 4.38%.

These are expressed with an actual/360 day count and quarterly
compounding.

With continuous compounding and an actual/365 day count they are
(see Exercise 1 a))
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Solution (7)

The forward rates calculated form the first two Eurodollar futures are
4.17% and 4.38%.

These are expressed with an actual/360 day count and quarterly
compounding.

With continuous compounding and an actual/365 day count they are
(see Exercise 1 a))

90 4

365 0.0417
—In{1+ =
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Solution (7)

The forward rates calculated form the first two Eurodollar futures are
4.17% and 4.38%.

These are expressed with an actual/360 day count and quarterly
compounding.

With continuous compounding and an actual/365 day count they are
(see Exercise 1 a))

90

365 ——1n (1 A 0.0417) = 4.2060%
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Solution (7)

and
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Solution (7)
and

—
4

365 14 0.0438\
90 -
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Solution (7)
and

365 14 0.0438
90

) = 4.4167%.
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and
% In (1 < 0'0438) = 4.4167%.
From
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Solution (7)
and 365 0.0438
—In{1+4+ = = 4.4167%.
90
From
R, — F1(To —T1) +RiTy
2 — o
T2
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and
% In (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

R, =
2 T,
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and
% In (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

R, =
2 T,

with F; = 4.2060%, T, = 300, T, =
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and
% In (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy
T, ’

with F; = 4.2060%, T; = 300, T, = 398, and Ry =

R, =
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and
% In (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

T, ’
with F; = 4.2060%, T, = 300, T, = 398, and R, = 4%, the 398 day
rate is

R, =
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and
% In (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

T, ’
with F; = 4.2060%, T, = 300, T, = 398, and R, = 4%, the 398 day
rate is

R, =

4.2060 x 98 +4 x 300
398 -
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and
%I (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

T, ’
with F; = 4.2060%, T, = 300, T, = 398, and R, = 4%, the 398 day
rate is

R, =

4.2060 x 98 + 4 x 300
398
The 489 day rate is obtained with F; =

= 4.0507
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and
%I (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

T, ’
with F; = 4.2060%, T, = 300, T, = 398, and R, = 4%, the 398 day
rate is

R, =

4.2060 x 98 + 4 x 300
398
The 489 day rate is obtained with F; = 4.4167%, T, =

= 4.0507
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and
% In (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

T, ’
with F; = 4.2060%, T, = 300, T, = 398, and R, = 4%, the 398 day
rate is

R, =

4.2060 x 98 + 4 x 300
398
The 489 day rate is obtained with F; = 4.4167%, T, = 398, T, =

= 4.0507
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and
%I (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

T, ’
with F; = 4.2060%, T, = 300, T, = 398, and R, = 4%, the 398 day
rate is

R, =

4.2060 x 98 44 x 300
398

The 489 day rate is obtained with F; = 4.4167%, T, = 398, T, = 489,
and Ry =

= 4.0507
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and
%I (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

T, ’
with F; = 4.2060%, T, = 300, T, = 398, and R, = 4%, the 398 day
rate is

R, =

4.2060 x 98 44 x 300
398

The 489 day rate is obtained with F; = 4.4167%, T, = 398, T, = 489,
and R; = 4.0507%:

= 4.0507
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and
%I (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

T, ’
with F; = 4.2060%, T, = 300, T, = 398, and R, = 4%, the 398 day
rate is

R, =

4.2060 x 98 44 x 300
398

The 489 day rate is obtained with F; = 4.4167%, T, = 398, T, = 489,
and R; = 4.0507%:

4.4167 x 91 +4.0507 x 398
489 n

= 4.0507
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and
%I (1 < 0'0438) = 4.4167%.
From

F1(T2—T1)+RiTy

T, ’
with F; = 4.2060%, T, = 300, T, = 398, and R, = 4%, the 398 day
rate is

R, =

4.2060 x 98 44 x 300
398

The 489 day rate is obtained with F; = 4.4167%, T, = 398, T, = 489,
and R; = 4.0507%:

4.4167 x 91 + 4.0507 x 398
489

= 4.0507

=4.1188

We are assuming that the first futures rate applies to 98 days rather
than the usual 91 days. The third futures quote is not needed.
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Exercise (8, Done)

On August 1 a portfolio manager has a bond portfolio worth $10
million. The duration of the portfolio in October will be 7.1 years. The
December Treasury bond futures price is currently 91-12 and the
cheapest-to-deliver bond will have a duration of 8.8 years at maturity.

a) How should the portfolio manager immunize the portfolio against
changes in interest rates over the next two months?

b) How can the portfolio manager change the duration of the portfolio
to 3.0 years?

Solution (8)

’J|
.
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Exercise (8, Done)

On August 1 a portfolio manager has a bond portfolio worth $10
million. The duration of the portfolio in October will be 7.1 years. The
December Treasury bond futures price is currently 91-12 and the
cheapest-to-deliver bond will have a duration of 8.8 years at maturity.

a) How should the portfolio manager immunize the portfolio against
changes in interest rates over the next two months?

b) How can the portfolio manager change the duration of the portfolio
to 3.0 years?

Solution (8)

a) The treasurer should short Treasury bond futures contract. If bond
prices go down, this futures position will provide offsetting gains. The
number of contracts that should be shorted is

| A
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Exercise (8, Done)

On August 1 a portfolio manager has a bond portfolio worth $10
million. The duration of the portfolio in October will be 7.1 years. The
December Treasury bond futures price is currently 91-12 and the
cheapest-to-deliver bond will have a duration of 8.8 years at maturity.

a) How should the portfolio manager immunize the portfolio against
changes in interest rates over the next two months?

b) How can the portfolio manager change the duration of the portfolio
to 3.0 years?

| A

Solution (8)

a) The treasurer should short Treasury bond futures contract. If bond
prices go down, this futures position will provide offsetting gains. The
number of contracts that should be shorted is

10,000,0007.1
91,375 88
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Exercise (8, Done)

On August 1 a portfolio manager has a bond portfolio worth $10
million. The duration of the portfolio in October will be 7.1 years. The
December Treasury bond futures price is currently 91-12 and the
cheapest-to-deliver bond will have a duration of 8.8 years at maturity.

a) How should the portfolio manager immunize the portfolio against
changes in interest rates over the next two months?

b) How can the portfolio manager change the duration of the portfolio
to 3.0 years?

| A

Solution (8)

a) The treasurer should short Treasury bond futures contract. If bond
prices go down, this futures position will provide offsetting gains. The
number of contracts that should be shorted is

10,000,0007.1

01375 gg o030
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Exercise (8)

On August 1 a portfolio manager has a bond portfolio worth $10
million. The duration of the portfolio in October will be 7.1 years. The
December Treasury bond futures price is currently 91-12 and the
cheapest-to-deliver bond will have a duration of 8.8 years at maturity.

b) How can the portfolio manager change the duration of the portfolio
to 3.0 years?

Solution (8)

g
]
g
\ | \
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Exercise (8)

On August 1 a portfolio manager has a bond portfolio worth $10
million. The duration of the portfolio in October will be 7.1 years. The
December Treasury bond futures price is currently 91-12 and the
cheapest-to-deliver bond will have a duration of 8.8 years at maturity.

b) How can the portfolio manager change the duration of the portfolio
to 3.0 years?

| \

Solution (8)

Rounding to the nearest whole number 88 contracts should be shorted.
b)

N
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Exercise (8)

On August 1 a portfolio manager has a bond portfolio worth $10
million. The duration of the portfolio in October will be 7.1 years. The
December Treasury bond futures price is currently 91-12 and the
cheapest-to-deliver bond will have a duration of 8.8 years at maturity.

b) How can the portfolio manager change the duration of the portfolio
to 3.0 years?

| \

Solution (8)

Rounding to the nearest whole number 88 contracts should be shorted.
b) In a) the problem is designed to reduce the duration to zero. To
reduce the duration from 7.1 to 3.0 instead of from 7.1 to O, the
treasurer should short

N
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Exercise (8)

On August 1 a portfolio manager has a bond portfolio worth $10
million. The duration of the portfolio in October will be 7.1 years. The
December Treasury bond futures price is currently 91-12 and the
cheapest-to-deliver bond will have a duration of 8.8 years at maturity.

b) How can the portfolio manager change the duration of the portfolio
to 3.0 years?

| \

Solution (8)
Rounding to the nearest whole number 88 contracts should be shorted.
b) In a) the problem is designed to reduce the duration to zero. To
reduce the duration from 7.1 to 3.0 instead of from 7.1 to O, the
treasurer should short

4.1
-1 x 88.30 =

N
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Exercise (8)

On August 1 a portfolio manager has a bond portfolio worth $10
million. The duration of the portfolio in October will be 7.1 years. The
December Treasury bond futures price is currently 91-12 and the
cheapest-to-deliver bond will have a duration of 8.8 years at maturity.

b) How can the portfolio manager change the duration of the portfolio
to 3.0 years?

| \

Solution (8)
Rounding to the nearest whole number 88 contracts should be shorted.
b) In a) the problem is designed to reduce the duration to zero. To
reduce the duration from 7.1 to 3.0 instead of from 7.1 to O, the
treasurer should short

4.1
-1 x 88.30 = 50.99

N
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Exercise (9)

The three-month Eurodollar futures price for a contract maturing in six
years is quoted as 95.20. The standard deviation of the change in the
short-term interest rate in one year is 1.1%.

Estimate the forward LIBOR interest rate for the period between 6.00
and 6.25 years in the future.

Solution (9)

\ | \
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Exercise (9)

The three-month Eurodollar futures price for a contract maturing in six
years is quoted as 95.20. The standard deviation of the change in the
short-term interest rate in one year is 1.1%.

Estimate the forward LIBOR interest rate for the period between 6.00
and 6.25 years in the future.

Solution (9)
From

| A

\
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Exercise (9)

The three-month Eurodollar futures price for a contract maturing in six
years is quoted as 95.20. The standard deviation of the change in the
short-term interest rate in one year is 1.1%.

Estimate the forward LIBOR interest rate for the period between 6.00
and 6.25 years in the future.

Solution (9)
From

| A

2
Forward Rate = Futures Rate — %Tsz

with o =

\
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Exercise (9)

The three-month Eurodollar futures price for a contract maturing in six
years is quoted as 95.20. The standard deviation of the change in the
short-term interest rate in one year is 1.1%.

Estimate the forward LIBOR interest rate for the period between 6.00
and 6.25 years in the future.

| A

Solution (9)
From

2
Forward Rate = Futures Rate — %Tsz

with o = 0.011, T; =

\
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Exercise (9)

The three-month Eurodollar futures price for a contract maturing in six
years is quoted as 95.20. The standard deviation of the change in the
short-term interest rate in one year is 1.1%.

Estimate the forward LIBOR interest rate for the period between 6.00
and 6.25 years in the future.

| A

Solution (9)
From

2
Forward Rate = Futures Rate — %Tsz

witho =0.011, T, =6,and T, =

\
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Exercise (9)

The three-month Eurodollar futures price for a contract maturing in six
years is quoted as 95.20. The standard deviation of the change in the
short-term interest rate in one year is 1.1%.

Estimate the forward LIBOR interest rate for the period between 6.00
and 6.25 years in the future.

| A

Solution (9)
From

2
Forward Rate = Futures Rate — %Tsz

with o = 0.011, T, = 6, and T, = 6.25, we have

Forward Rate = Futures Rate —

\
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Exercise (9)

The three-month Eurodollar futures price for a contract maturing in six
years is quoted as 95.20. The standard deviation of the change in the
short-term interest rate in one year is 1.1%.

Estimate the forward LIBOR interest rate for the period between 6.00
and 6.25 years in the future.

| A

Solution (9)
From

2
Forward Rate = Futures Rate — %Tsz

with o = 0.011, T, = 6, and T, = 6.25, we have

0.0112

Forward Rate = Futures Rate — X 6 X 6.25

= Futures Rate —

\
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Exercise (9)

The three-month Eurodollar futures price for a contract maturing in six
years is quoted as 95.20. The standard deviation of the change in the
short-term interest rate in one year is 1.1%.

Estimate the forward LIBOR interest rate for the period between 6.00
and 6.25 years in the future.

| A

Solution (9)
From

2
Forward Rate = Futures Rate — %Tsz

with o = 0.011, T, = 6, and T, = 6.25, we have

0.0112

Forward Rate = Futures Rate — X 6 X 6.25

= Futures Rate — 0.002269

\
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Solution (9)

The convexity adjustment §T1T2 is then about 23 basis points. The
futures Rate is
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Solution (9)

The convexity adjustment §T1T2 is then about 23 basis points. The

futures Rate is 19979220 — 4.8% with quarterly compounding and an

actual/360 day count. This becomes
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Solution (9)

The convexity adjustment §T1T2 is then about 23 basis points. The
futures Rate is 19979220 — 4.8% with quarterly compounding and an
actual/360 day count. This becomes

365
48 x — =
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Solution (9)

The convexity adjustment §T1T2 is then about 23 basis points. The
futures Rate is 19979220 — 4.8% with quarterly compounding and an
actual/360 day count. This becomes

365 o
4.8 x 360 4.867%
with an actual/360 day count (see Exercise 1 b)).

Itis
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Solution (9)

The convexity adjustment §T1T2 is then about 23 basis points. The
futures Rate is 19979220 — 4.8% with quarterly compounding and an
actual/360 day count. This becomes

365 .
4.8 x oo = 4.867%

with an actual/360 day count (see Exercise 1 b)).

s 0.04867
i (14 2997 ) -

Jérdme MATHIS (LEDa) Derivative Instruments



Solution (9)

The convexity adjustment §T1T2 is then about 23 basis points. The
futures Rate is 19979220 — 4.8% with quarterly compounding and an
actual/360 day count. This becomes

365

o0 0
4.8 x 360 4.867%

with an actual/360 day count (see Exercise 1 b)).

s 0.04867
4In (1 + —

4

with continuous compounding. The forward rate is therefore

) = 4.84%
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Solution (9)

The convexity adjustment §T1T2 is then about 23 basis points. The
futures Rate is 19979220 — 4.8% with quarterly compounding and an
actual/360 day count. This becomes

365

o0 0
4.8 x 360 4.867%

with an actual/360 day count (see Exercise 1 b)).

s 0.04867
4In (1 + —

4

with continuous compounding. The forward rate is therefore

) = 4.84%

484 —0.23 =
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Solution (9)

The convexity adjustment §T1T2 is then about 23 basis points. The
futures Rate is 19979220 — 4.8% with quarterly compounding and an
actual/360 day count. This becomes

365 o
4.8 x 360 4.867%
with an actual/360 day count (see Exercise 1 b)).

s 0.04867
4In (1 + —

4

with continuous compounding. The forward rate is therefore

) = 4.84%

484 —-0.23 =4.61%

with continuous compounding.
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