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Motivation and Types of Rates
Motivation

Interest rates are a factor in the valuation of virtually all derivatives.

An interest rate in a particular situation defines the amount of

money a borrower promises to pay the lender.

For any given currency, many different types of interest rates are

regularly quoted.

◮ These include mortgage rates, deposit rates, prime borrowing rates,
and so on.

The interest rate applicable in a situation depends on the credit risk.

◮ This is the risk that there will be a default by the borrower of funds, so
that the interest and principal are not paid to the lender as promised.

◮ The higher the credit risk, the higher the interest rate that is promised
by the borrower.
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Motivation and Types of Rates
Types of Rates

Treasury rates are the rates an investor earns on Treasury bills

and Treasury bonds.

◮ These are the instruments used by a government to borrow in its own
currency.

◮ It is usually assumed that there is no chance that a government will
default on an obligation denominated in its own currency.

⋆ Treasury rates are therefore usually assumed totally risk-free rates.
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Motivation and Types of Rates
Types of Rates
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Motivation and Types of Rates
Types of Rates

LIBOR is the rate of interest at which a bank is prepared to deposit

money with another bank.

◮ LIBOR is short for the London Interbank Offered Rate.
◮ It is quoted in all major currencies for maturities up to 12 months:

⋆ E.g., 3-month LIBOR is the rate at which 3-month deposits are offered.

◮ A deposit with a bank can be regarded as a loan to that bank.

⋆ A bank must therefore satisfy certain creditworthiness criteria in order
to be able to receive deposits from another bank at LIBOR.

⋆ Typically it must have a AA credit rating.
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Motivation and Types of Rates
Types of Rates

LIBID is is the rate at which banks will accept deposits from other

banks.
◮ LIBID is short for the London Interbank Bid Rate.

At any specified time, there is a small spread between LIBID and

LIBOR rates (with LIBOR higher than LIBID).
◮ The rates themselves are determined by active trading between

banks and adjust so that the supply of funds in the interbank market
equals the demand for funds in that market.

Repurchase agreement, or Repo, is a contract where:
◮ an investment dealer who owns securities agrees to sell them to

another company now and buy them back later at a slightly higher
price; and

◮ the other company is providing a loan to the investment dealer.

Repo rate is the rate of a repurchase agreement.
◮ It is calculated from the difference between the price at which the

securities are sold and the price at which they are repurchased.
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Motivation and Types of Rates
Types of Rates

Risk-Free Rate

◮ The short-term risk-free rate traditionally used by derivatives
practitioners is not Treasury rate.

◮ The Treasury rate is considered to be artificially low for a number of
reasons

⋆ 1. Treasury bills and Treasury bonds must be purchased by financial
institutions to fulfill a variety of regulatory requirements.

⋆ This increases demand for these Treasury instruments driving the price
up and the yield down.

⋆ 2. The amount of capital a bank is required to hold to support an
investment in Treasury bills and bonds is substantially smaller than the
capital required to support a similar investment in other instruments
with very low risk.

⋆ 3. In the United States, Treasury instruments are given a favorable tax
treatment compared with most other fixed-income investments because
they are not taxed at the state level.
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Motivation and Types of Rates
Types of Rates

Risk-Free Rate (cont’)

◮ Eurodollar futures and swaps are used to extend the LIBOR yield
curve beyond one year

◮ Following the credit crisis that started in 2007, many dealers switched
to using overnight indexed swap rates instead of LIBOR as risk-free
rates

⋆ Banks became very reluctant to lend to each other during the subprime
crisis and LIBOR rates soared.
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Motivation and Types of Rates
Types of Rates

◮ Following LIBOR scandal (2012), LIBOR Dollar has been
progressively replaced by Secured Overnight Financing Rate (SOFR)
from 2018 to 2023.

⋆ FED calculates SOFR based on Repo market.

◮ Similarly, EONIA (Euro OverNight Index Average) has been
progressively replaced by Euro Short-Term Rate (€STR said "Ester")
from 2019 to 2022.

⋆ ECB calculates €STR based on overnight unsecured fixed rate deposit
transactions over €1 million among the 50 largest banks in the euro
area.
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Measuring Interest Rates

If the interest rate is measured with annual compounding, a bank’s

statement that the interest rate is 10% means that $100 grows to

$100× 1.1 = $110

at the end of 1 year.

When the interest rate is measured with semiannual compounding,

it means that 5% is earned every 6 months, with the interest being

reinvested. In this case $100 grows to

$100×

�
1+

10%

2

�2

= $100× (1.05)2 ≃ $110.25

at the end of 1 year.
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Measuring Interest Rates

When the interest rate is measured with quarterly compounding, the

bank’s statement means that 2.5% is earned every 3 months, with

the interest being reinvested. The $100 then grows to

$100×

�
1+

10%

4

�4

= $100 (1.025)4 ≃ $110.38

at the end of 1 year.
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Measuring Interest Rates
Generalization

To generalize our results, suppose that an amount A is invested for

n years at an interest rate of R per annum. If the rate is

compounded once per annum, the terminal value of the investment

is

A(1+R)n.

If the rate is compounded m times per annum, the terminal value of

the investment is

A

�
1+

R

m

�n×m

.

Definition

When m = 1, the rate is referred to as the equivalent annual interest

rate.
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Measuring Interest Rates

Table 1 shows the effect of the compounding frequency on the value

of $100 at the end of 1 year when the interest rate is 10% per

annum.
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Measuring Interest Rates
Continuous Compounding

Question

We observe that the amount in right column of Table 1 is increasing

with the compounding frequency. Is there any upper bound on this

amount?

Definition

The limit as the compounding frequency, m, tends to infinity is known

as continuous compounding.

Solution

Yes, there is an upper bound on this amount. This upper bound writes

as 100e0.1.
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Measuring Interest Rates
Continuous Compounding

Property

We have

lim
m→+∞

(1+
R

m
)n×m = eRn

Proof.

From the Taylor serie we know that

f (a+ x) = f (a) + f ′(a)x +
f
′′
(a)

2
x2

+
f
′′′
(a)

3!
x3 + ...

=
+∞

∑
n=0

f n(a)

n!
xn.
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Measuring Interest Rates
Continuous Compounding

Proof.

So we obtain the following Maclaurin serie

ln (1+ x) =
+∞

∑
n=1

(−1)n+1 xn

n
for |x | < 1.

So
1

x
ln (1+ x) = 1−

x

2
+

x2

3
−

x3

4
+ ...

For x = R
m with m > R we have |Rm | < 1 so

1

R

�
ln

�
1+

R

m

�m�
=

1
R
m

ln

�
1+

R

m

�
= 1−

R

2m
+

R2

3m2
−

R3

4m3
+ ...
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Measuring Interest Rates
Continuous Compounding

Proof.

That is

ln

�
1+

R

m

�m

= R

�
1−

R

2m
+

R2

3m2
−

R3

4m3
+ ...

�

= R −
R2

2m
+

R3

3m2
−

R4

4m3
+ ...

Hence

lim
m→+∞

ln

�
1+

R

m

�m

= R

That is

limm→+∞(1+
R
m )

m = eR and limm→+∞(1+
R
m )

n×m = eRn
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Measuring Interest Rates
Continuous Compounding

How to to convert a rate with a compounding frequency of m times

per annum to a continuously compounded rate and vice versa?

Solution

Suppose that Rc is a rate of interest with continuous compounding and

Rm is the equivalent rate with compounding m times per annum.

We have

AeRcn = A

�
1+

Rm

m

�m

That is

Rc = m ln
�
1+ Rm

m

�
and Rm = m(e

Rc
m − 1)
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Measuring Interest Rates
Continuous Compounding

Question

Suppose that a lender quotes the interest rate on loans as 10% per

annum with continuous compounding, and that interest is actually paid

monthly.

What is the equivalent rate with monthly compounding?

What are the interest payments required each month on a $25,000

loan?
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Measuring Interest Rates
Continuous Compounding

Solution

The equivalent rate with monthly compounding writes as

Rm = m(e
Rc
m − 1)

with m = 12, and Rc = 10%.

That is

R12 = 12(e
0.10
12 − 1) ≃ 10.04%

This means that on a $25,000 loan, interest payments of

0.1004

12
25,000 = $209.17

would be required each month.
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Exercise (4)

A bank quotes you an interest rate of 14% per annum with quarterly

compounding.

What is the equivalent rate with (a) continuous compounding and (b)

annual compounding?

Solution (4)

(a) The rate with continuous compounding is

4 ln

�
1+

0.14

4

�
= 13.76%

(b) The rate with annual compounding is

�
1+

0.14

4

�4

− 1 = 14.75%
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Zero Rates and bonds

Definition

A zero rate (or spot rate), for maturity T is the rate of interest earned

on an investment that provides a payoff only at time T .

Example

Suppose a 3-year zero rate with continuous compounding is quoted as

2% per annum. This means that $100, if invested for 3 years, grows to

100e0.02×3 ≃ 106.18.

Problem: Most of the interest rates we observe directly in the

market are not pure zero rates.

◮ Consider a 3-year government bond that provides a 2% coupon. The
price of this bond does not by itself determine the 3-year Treasury
zero rate because some of the return on the bond is realized in the
form of coupons prior to the end of year 3.
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Zero Rates and bonds
What is the difference between bills, notes and bonds?

Treasury bills (T-Bills), notes and bonds are marketable securities

the U.S. government sells in order to pay off maturing debt and to

raise the cash needed to run the federal government.

A principal (which is also known as par value or face value) is

what is paid at the end of the security life (minus the final coupon, if

any).

T-bills are short-term obligations issued with a term of one year or

less, and because they are sold at a discount from face value, they

do not pay interest before maturity.

◮ In other words, they are short-term zero coupon bonds.
◮ The interest is the difference between the purchase price and the

price paid either at maturity (face value) or the price of the bill if sold
prior to maturity.
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Zero Rates and bonds
What is the difference between bills, notes and bonds?

Treasury notes and bonds, on the other hand, are securities that

have a stated interest rate that is paid periodically (usually

semi-annually) until maturity.

◮ What makes notes and bonds different are the terms to maturity.
Notes are issued in two-, three-, five- and 10-year terms. Conversely,
bonds are long-term investments with terms of more than 10 years.

In all this chapter we will use the generic word “bonds” to refer to

T-bills, notes, and bonds.
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Zero Rates and bonds
Bond Pricing

Question

What is the theoretical price of a 2-year Treasury bond with a principal

of $100 providing coupons at the rate of 6% per annum semiannually,

when the zero rates are given by the following table?
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Zero Rates and bonds
Bond Pricing

Solution

This bond will deliver:

- $3 in 6 months;

- $3 in 12 months;

- $3 in 18 months; and

- $103 in 24 months.

According to the table, these amounts have a present value of

3e−0.05×0.5 + 3e−0.058×1 + 3e−0.064×1.5 + 103e−0.068×2 ≃ 98.39

Jérôme MATHIS (LEDa) Derivative Instruments Chapter 5 29 / 92

Zero Rates and bonds
Bond Yield

Definition

The bond yield is the discount rate that makes the present value of

the cash flows on the bond equal to the market price of the bond.

Question

Suppose that the theoretical price of the bond we have been

considering, $98.39, is also its market value.

What is the corresponding bind yield?
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Zero Rates and bonds
Bond Yield

Solution

The bond yield (continuously compounded), denoted as y, is given by

solving

3e−y×0.5 + 3e−y×1 + 3e−y×1.5 + 103e−y×2 ≃ 98.39

to get y = 0.0676 or 6.76%.

Remark: One way of solving nonlinear equations of the form f (x) = 0,

such as the one of the previous solution (with x = y and f (x) is LHS

minus RHS), is to use the Newton’s method. We start with an estimate x0
of the solution and produce successively better estimates x1, x2, ... using

the formula xi+1 = xi −
f (xi )
f ′(xi )

until a sufficiently accurate value is reached.
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Zero Rates and bonds
Par Yield

Definition

The par yield for a certain maturity is the coupon rate that causes the

bond price to equal its par value.

Question

Suppose that the coupon on a 2-year bond in our example is c per

annum (or c
2 per 6 months).

What is the corresponding 2-year par yield?
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Zero Rates and bonds
Par Yield

Solution

Using the zero rates in Table 4.2, the value of the bond is equal to its

par value of 100 when

c

2
e−0.05×0.5+

c

2
e−0.058×1+

c

2
e−0.064×1.5+

�
100+

c

2

�
e−0.068×2 = 100

so c = 6.87.

The 2-year par yield is therefore 6.87% per annum (with semiannual

compounding).
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Zero Rates and bonds
Par Yield

In general if m is the number of coupon payments per year, d is the

present value of $1 received at maturity and A is the present value

of an annuity of $1 on each coupon date we have

c =
(100− 100d)m

A

In our example, m = 2, d = e−0.068×2, and

A = e−0.05×0.5 + e−0.058×1 + e−0.064×1.5 + e−0.068×2 ≃ 3.700 so

c ≃

�
100− 100e−0.068×2

�
2

3.7
≃ 6.87%

The formula confirms that the par yield is 6.87% per annum.
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Zero Rates and bonds
Determining Treasury zero rates using Bootstrap Method

Since new three months, six months, and one year T-bills are traded

publicly, we can look up their yields from database (internet,

newspaper, etc.).

It may be the case that there is no 18-month zero-coupon Treasury

issue traded publicly at the moment.

We can use 18-month coupon-bearing Treasury security to deduce

it.

The most popular approach is an iterative process called the

bootstrap method which consists in

◮ First, defining a set of yielding products (e.g., coupon-bearing bonds).
◮ Second, deriving discount factors for all terms recursively, by forward

substitution.
◮ Doing so, we ’Bootstrap’ the zero-coupon curve step-by-step.
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Zero Rates and bonds
Determining Treasury zero rates using Bootstrap Method

Exercise

Deduce the Treasury zero rates of Table 4.2 from the following Table

4.3 that gives the prices of five bonds.

Because the first three bonds pay no coupons, the zero rates

corresponding to the maturities of these bonds can easily be

calculated.
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Zero Rates and bonds
Determining Treasury zero rates using Bootstrap Method

Solution (3-month bond)

The 3-month bond has the effect of turning an investment of 97.5 into

100 in 3 months. The continuously compounded 3-month rate R is

therefore given by solving

100 = 97.5eR×0.25

It is 10.127% per annum.

Solution (6-month bond)

The 6-month continuously compounded rate is similarly given by

solving

100 = 94.9eR×0.5

It is 10.469% per annum.
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Zero Rates and bonds
Determining Treasury zero rates using Bootstrap Method

Solution (1-year bond)

Similarly, the 1-year rate with continuous compounding is given by

solving

100 = 90eR×1.0

It is 10.536% per annum.
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Zero Rates and bonds
Determining Treasury zero rates using Bootstrap Method

Solution (18-month bond)

The fourth bond lasts 1.5 years. The payments are as follows:

- 6 months: $4;

- 1 year: $4;

- 1.5 years: $104.

From our earlier calculations, we know that

R0.5 = 0.10469

and

R1.0 = 0.10536

.
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Zero Rates and bonds
Determining Treasury zero rates using Bootstrap Method

Solution (18-month bond)

So R1.5 satisfies

4e−0.10469×0.5 + 4e−0.10536×1.0 + 104e−R1.5×1.5 = 96

that is R1.5 ≃ 0.10681.

This is the only zero rate that is consistent with the 6-month rate,

1-year rate, and the data in Table 4.3.
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Zero Rates and bonds
Determining Treasury zero rates using Bootstrap Method

Solution (2-year bond)

The 2-year zero rate can be calculated similarly from the 6-month,

1-year, and 1.5-year zero rates, and the information on the last bond in

Table 4.3.

If R2.0 is the 2-year zero rate, then

6e−0.10469×0.5 + 6e−0.10536×1.0 + 6e−0.10681×1.5 + 106e−R2.0×2 = 101.6

This gives R2.0 = 0.10808, or 10.808%.
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Zero Rates and bonds
Determining Treasury zero rates using Bootstrap Method

Definition

The zero curve is a chart showing the zero rate as a function of

maturity.

A common assumption is that the zero curve is linear between the

points determined using the bootstrap method.
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Forward Rates and Forward Rate Agreement
Forward Rates

Definition

The forward rate is the future zero rate implied by today’s term

structure of interest rates.

Example

The forward interest rate for year 2 is the rate of interest that is implied

by the zero rates for the period of time between the end of the first year

and the end of the second year.
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Forward Rates and Forward Rate Agreement
Forward Rates

Consider Table 4.5 in which the second column gives the LIBOR

zero rates.

The forward interest rate for year 2 can be calculated from the

1-year zero interest rate of 3% per annum and the 2-year zero

interest rate of 4% per annum.

It is the rate of interest for year 2 that, when combined with 3% per

annum for year 1, gives 4% overall for the 2 years.
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Forward Rates and Forward Rate Agreement
Forward Rates

Question

According to the third column of Table 4.5 the forward interest rate for

year 2 is 5% per annum.

Is it correct?
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Forward Rates and Forward Rate Agreement
Forward Rates

Solution

Suppose that $100 is invested. A rate of 3% for the first year and 5%

for the second year gives

100e0.03×1e0.05×1 = $108.33

at the end of the second year.

A rate of 4% per annum for 2 years gives

100e0.04×2 = $108.33

Remark: The result is only approximately true when the rates are

not continuously compounded.
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Forward Rates and Forward Rate Agreement
Forward Rates

The forward rate for year 3 is the rate of interest that is implied by a

4% per annum 2-year zero rate and a 4.6% per annum 3-year zero

rate.

According to the third column of Table 4.5 it is 5.8% per annum.

◮ The reason is that an investment for 2 years at 4% per annum
combined with an investment for one year at 5.8% per annum gives
an overall average return for the three years of 4.6% per annum.

In general, if R1 and R2 are the zero rates for maturities T1 and T2,

respectively, and RF is the forward interest rate for the period of

time between T1 and T2, then

eR2T2 = eR1T1eRF (T2−T1), that is RF =
R2T2 −R1T1

T2 − T1
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Forward Rates and Forward Rate Agreement
Forward Rates

The previous formula can be written as

RF = R2 + (R2 −R1)
T1

T2 − T1

This shows that if the zero curve is upward sloping between T1 and

T2, so that R2 > R1, then RF > R2.

◮ I.e., the forward rate for a period of time ending at T2 is greater than
the T2 zero rate.

Similarly, if the zero curve is downward sloping with R2 < R1, then

RF < R2.

◮ I.e., the forward rate is less than the T2 zero rate.
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Forward Rates and Forward Rate Agreement
Forward Rates

Definition

The instantaneous forward rate for a maturity T is the forward rate

that applies for a very short time period starting at T .

It is

R + T
dR

dT
,

where R is the T -year rate.
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Forward Rates and Forward Rate Agreement
Forward Rate Agreement

Definition

A forward rate agreement (FRA) is an OTC agreement that a certain

rate will apply to a certain principal during a certain future time period.

Consider a forward rate agreement where company X is agreeing to

lend money to company Y for the period of time between T1 and T2.

◮ RK : The rate of interest agreed to in the FRA (agreed today).
◮ RF : The forward LIBOR interest rate calculated for the period

between times T1 and T2 (calculated today)
◮ RM : The actual LIBOR interest rate observed for the period between

times T1 and T2 (observed in the future: at time T1).
◮ L: The principal underlying the contract.

Normally company X would earn RM from the LIBOR loan. The

FRA means that it will earn RK .
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Forward Rates and Forward Rate Agreement
Forward Rate Agreement

The interest rate is set at time T1 and paid at time T2.

Assume that the rates RK , RF , and RM are all measured with a

compounding frequency reflecting the lenght of the period to which

they apply.

The extra interest rate (which may be negative) that it earns as a

result of entering into the FRA is (RK −RM).

◮ It leads to a cash flow to company X at time T2 of

L (RK −RM ) (T2 − T1)

◮ and to company Y at time T2 of

L (RM −RK ) (T2 − T1)
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Forward Rates and Forward Rate Agreement
Forward Rate Agreement

There is another interpretation of the FRA.

◮ It is an agreement where company X will receive interest on the
principal between T1 and T2 at the fixed rate of RK and pay interest
at the realized LIBOR rate of RM .

◮ Company Y will pay interest on the principal between T1 and T2 at
the fixed rate of RK and receive interest at RM .
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Forward Rates and Forward Rate Agreement
Forward Rate Agreement

Usually FRAs are settled at time T1 rather than T2. The payoff must

then be discounted from time T2 to T1.

◮ For company X, the payoff at time T1 is

L (RK −RM ) (T2 − T1)

1+RM (T2 − T1)

◮ For company Y, the payoff at time T1 is

L (RM −RK ) (T2 − T1)

1+RM (T2 − T1)
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Forward Rates and Forward Rate Agreement
Forward Rate Agreement

Question

Suppose that a company enters into a FRA that is designed to ensure

it will receive a fixed rate of 5% on a principal of $50 million for a

3-month period starting in 2 years.

What are the cash flows for the lender and borrower if 3-month LIBOR

proves to be 5.8% for the 3-month period?

(We assume the interest rates are expressed with quarterly

compounding, i.e. four times a year).
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Forward Rates and Forward Rate Agreement
Forward Rate Agreement

Solution

This FRA is an exchange where LIBOR is paid and 5% is received for

the 3-month period.

The cash flow to the lender will be

L (RK −RM) (T2 − T1)

at the 2.25-year point with RK = 0.05, RM = 0.058, L = 50,000,000,

T1 = 2 and T2 = 2.25.

This is equal to −$100,000.

Jérôme MATHIS (LEDa) Derivative Instruments Chapter 5 56 / 92



Forward Rates and Forward Rate Agreement
Forward Rate Agreement

Solution

The cash flow at the 2-year point writes as

L (RK −RM) (T2 − T1)

1+RM(T2 − T1)
≃ −$98,571

The cash flow to the party on the opposite side of the transaction will

be + $100,000 at the 2.25-year point or + $98,571 at the 2-year

point.
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Forward Rates and Forward Rate Agreement
Forward Rate Agreement

The value of a FRA is the present value of the difference between

the interest that would be paid at rate RF and the interest that would

be paid at rate RK .

◮ It is usually the case that RK is set equal to RF when the FRA is first
initiated.

◮ The FRA is then worth zero but its value will evolve over time as RF

changes.

Let us compare two FRAs.

◮ The first promises that the LIBOR forward rate RF will be received on
a principal of L between times T1 and T2.

◮ The second promises that RK will be received on the same principal
between the same two dates.

◮ The two contracts are the same except for the interest payments
received at time T2.
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Forward Rates and Forward Rate Agreement
Forward Rate Agreement

Question

What is the excess of the present value of the second contract over the

first?

We denote by R2 the continously compounded riskless zero rate for a

maturity T2

Solution

The present value of the difference between these interest payments

writes as

L (RK −RF ) (T2 − T1)e
−R2T2 .
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Forward Rates and Forward Rate Agreement
Forward Rate Agreement

Because the value of the first FRA, where RF is received, is zero,

the value of the second FRA, where RK is received, is

VFRA = L (RK −RF ) (T2 − T1)e
−R2T2

Similarly, the value of a FRA where RK is paid is

VFRA = L (RF −RK ) (T2 − T1)e
−R2T2
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Chapter 5: Interest Rates
Outline
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2 Measuring Interest Rates

3 Zero Rates and Bonds
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7 Summary
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Duration and convexity
Silicon Valley Bank collapse

Role of portfolio duration and convexity in SVB collapse (March 2023)

SVB (Silicon Valley Bank): A major bank serving tech companies.

◮ 16th-largest commercial bank in the US.
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Duration and convexity
Silicon Valley Bank collapse

Asset-Liability Mismatch: Short-term liabilities vs. long-duration

assets.

◮ Liability: SVB saw massive deposit growth in the early pandemic

⋆ Silicon valley VC industry boomed: total deposits 2023 = 4x total
deposits 2019.
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Duration and convexity
Silicon Valley Bank collapse

Asset: SVB purchased unhedged long-maturity US Treasury bonds

and mortgage-backed securities.

◮ Long-term/total assets: from 35% (2019) to 55% (2023)
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Duration and convexity
Silicon Valley Bank collapse

Fed (2022-23) combatted inflation.: ր interest rates
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Duration and convexity
Silicon Valley Bank collapse

Fedր interest rates =⇒ց bond prices=⇒ցSVB Asset

SVB duration (and convexity) mismanagement

◮ Duration indicates the years it takes to receive a bond’s true cost,

weighing in the present value of all future coupon and principal

payments.

⋆ Longer duration =⇒ Higher sensitivity to interest rate changes.

◮ Convexity refers to non-linear impact of interest rate changes.

⋆ Bond’s price drops faster and by larger amounts than expected from

linear duration effects alone.

⋆ Price decline accelerated by positive convexity as rates rise.

⋆ Positive convexity =⇒ Increased vulnerability to interest rate changes.
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Duration and convexity
Silicon Valley Bank collapse

SVB liabilities:
◮ րinterest rates =⇒ցVC funding &րcash burn among tech

companies =⇒ր deposit outflows.
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Duration and convexity
Silicon Valley Bank collapse

SVB concentration mismanagement
◮ ⋆ Assets concentrated in long-term securities

⋆ Deposit base undiversified (tech companies).

SVB Liquidity Crisis
◮ Need to sell assets at a loss to meet withdrawals.
◮ Liquidity issues =⇒ loss of depositor confidence =⇒fear of

insolvency=⇒bank run.
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Duration and convexity
Duration

Definition

The duration of a bond is a measure of how long on average the

holder of the bond has to wait before receiving cash payments.

Suppose that a bond provides the holder with cash flows ci at time

ti , i = 1,2, ...,n.

The bond price B and bond yield y (continuously compounded) are

related by

B =
n

∑
i=1

cie
−yti .

The duration of the bond, D, is defined as

D =

n

∑
i=1

ticie
−yti

B
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Duration and convexity
Duration

The duration can be rewritten as

n

∑
i=1

ti
cie

−yti

B

where cie
−yti

B represents the present value of the cash flow ci to the

bond price.
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Duration and convexity
Duration

The bond price is the present value of all payments.

◮ The duration is therefore a weighted average of the times when

payments are made, with the weight applied to time ti being equal to

the proportion of the bond’s total present value provided by the cash

flow at time ti .
◮ The sum of the weights is 1.

⋆ Indeed, from B =
n

∑
i=1

cie
−yti we have

n

∑
i=1

cie
−yti

B = 1.

Note that for the purposes of the definition of duration all

discounting is done at the bond yield rate of interest, y .

◮ We do not use a different zero rate for each cash flow as we did for

bond pricing.
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Duration and convexity
Duration

When a small change ∆y in the yield is considered, it is

approximately true that

∆B =
dB

dy
∆y .

◮ (Indeed, recall that f ′ (x) = lim∆x→0
∆f (x)

∆x , so ∆f (x) ≃ f ′ (x)∆x)

From

B =
n

∑
i=1

cie
−yti

we have
dB

dy
= −

n

∑
i=1

ticie
−yti

Jérôme MATHIS (LEDa) Derivative Instruments Chapter 5 72 / 92



Duration and convexity
Duration

so

∆B = − ∆y
n

∑
i=1

ticie
−yti = −∆yBD

That is
∆B

B
= −D∆y

Duration is important because it leads to this key relationship

between the change in the yield on the bond and the change in its

price.
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Duration and convexity
Modified Duration

Exercise

Show that when the yield y is expressed with a compounding

frequency of m times per year we have

∆B = −
∆yBD

1+ y
m

Solution

Homework.
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Duration and convexity
Modified Duration

The expression

D∗ =
D

1+ y
m

is referred to as the the bond’s modified duration.

◮ It allows the duration relationship to be simplified to

∆B

B
= −D∗∆y

as the one we obtained with continuous compounding.
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Duration and convexity
Bond Portfolios

The duration for a bond portfolio is the weighted average duration of

the bonds in the portfolio with weights proportional to prices.

The previous key duration relationships can be used to estimate the

change in the value of the bond portfolio for a small change ∆y in

the yields of all the bonds.

◮ There is an implicit assumption that the yields of all bonds will

change by approximately the same amount.
◮ When the bonds have widely differing maturities, this happens only

when there is a parallel shift in the zero-coupon yield curve.

By choosing a portfolio so that the duration of assets equals the

duration of liabilities (i.e., the net duration D is zero), a financial

institution eliminates its exposure to small parallel shifts in the yield

curve. But it is still exposed to shifts that are either large or

nonparallel.
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Duration and convexity
Convexity

For large yield changes, the portfolios behave differently.

Consider the following figure
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Duration and convexity
Convexity

Portfolio X has more curvature in its relationship with yields than

portfolio Y.

◮ A factor known as convexity measures this curvature and can be

used to improve the relationship in equation.

From Taylor series expansions, we can obtain a more accurate

expression for ∆B that allows us to consider larger yield changes:

∆B =
dB

dy
∆y +

1

2

d2B

dy2
(∆y)2
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Duration and convexity
Convexity

This leads to
∆B

B
=

dB

dy

1

B
∆y +

1

2

d2B

dy2

1

B
(∆y)2

that is
∆B

B
= −D∆y +

1

2
C (∆y)2

where

C =
d2B

dy2

1

B
=

n

∑
i=1

t2i cie
−yti

B

denotes the curvature or convexity of the bond portfolio.
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Duration and convexity
Convexity

By choosing a portfolio of assets and liabilities with a net duration of

zero (D = 0) and a net convexity of zero (C = 0), a financial

institution can make itself immune to relatively large parallel shifts in

the zero curve.

◮ However, it is still exposed to nonparallel shifts.
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Exercise (13)

A five-year bond with a yield of 11% (continuously compounded) pays

an 8% coupon at the end of each year.

a) What is the bond’s price?

b) What is the bond’s duration?

c) Use the duration to calculate the effect on the bond’s price of a

0.2% decrease in its yield.

d) Recalculate the bond’s price on the basis of a 10.8% per annum

yield and verify that the result is in agreement with your answer to (c).

Solution (13)

(a) The bond’s price is

8e−0.11 + 8e−0.11×2 + 8e−011×3 + 8e−011×4 + 108e−011×5 = 86.80
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Exercise (13)

A five-year bond with a yield of 11% (continuously compounded) pays

an 8% coupon at the end of each year.

a) What is the bond’s price?

b) What is the bond’s duration?

c) Use the duration to calculate the effect on the bond’s price of a

0.2% decrease in its yield.

d) Recalculate the bond’s price on the basis of a 10.8% per annum

yield and verify that the result is in agreement with your answer to (c).

Solution (13)

(b) The bond’s duration is

1

86.80

" 
4

∑
k=1

k8e−0.11×k

!

+ 5× 108e−011×5

#

= 4.256 years

Jérôme MATHIS (LEDa) Derivative Instruments Chapter 5 82 / 92

Exercise (13)

A five-year bond with a yield of 11% (continuously compounded) pays

an 8% coupon at the end of each year.

a) What is the bond’s price?

b) What is the bond’s duration?

c) Use the duration to calculate the effect on the bond’s price of a

0.2% decrease in its yield.

d) Recalculate the bond’s price on the basis of a 10.8% per annum

yield and verify that the result is in agreement with your answer to (c).

Solution (13)

(c) From

∆B = − BD∆y

the effect on the bond’s price of a 0.2% decrease in its yield is

86.80× 4.256× 0.002 = 0.74

The bond’s price should increase from 86.80 to 87.54..
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Exercise (13)

A five-year bond with a yield of 11% (continuously compounded) pays

an 8% coupon at the end of each year.

a) What is the bond’s price?

b) What is the bond’s duration?

c) Use the duration to calculate the effect on the bond’s price of a

0.2% decrease in its yield.

d) Recalculate the bond’s price on the basis of a 10.8% per annum

yield and verify that the result is in agreement with your answer to (c).

Solution (13)

(d) With a 10.8% yield the bond’s price is

8e−0.108+8e−0.108×2+8e−0.108×3+8e−0.108×4+108e−0.108×5 = 87.54

This is consistent with the answer in (c).
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Chapter 5: Interest Rates
Outline

1 Motivation and Types of Rates

2 Measuring Interest Rates

3 Zero Rates and Bonds

4 Forward Rates and Forward Rate Agreement

5 Duration and Convexity

6 Theories of the Term Structure

7 Summary
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Theories of the Term Structure

Why is the shape of the zero curve sometimes downward sloping,

sometimes upward sloping, and sometimes partly upward sloping

and partly downward sloping?

◮ Three main theories have been proposed.

Expectations theory conjectures that long-term interest rates

should reflect expected future short-term interest rates.

◮ So a forward interest rate is equal to the expected future zero interest

rate.

Market segmentation theory conjectures that short, medium and

long rates are determined independently of each other.

◮ Short (resp., medium, long)-term interest rates are determined by

supply and demand in the corresponding short (resp., medium,

long)-term market.
◮ Markets are segmented: e.g., a large pension fund invests in bonds

of a certain maturity and does not readily switch from one maturity to

another.
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Theories of the Term Structure

Liquidity preference theory conjectures that investors prefer to

preserve their liquidity and invest funds for short periods of time.

Borrowers, on the other hand, usually prefer to borrow at fixed rates

for long periods of time.

◮ This leads to a situation in which forward rates are greater than

expected future zero rates.
◮ Indeed, to match the maturities of borrowers and lenders banks raise

long-term rates so that forward interest rates are higher than

expected future spot interest rates.

Liquidity preference theory is the more consistent with the empirical

result that yield curves tend to be upward sloping most of the time

and is downward sloping only when the market expects a steep

decline in short-term rates.
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Chapter 5: Interest Rates
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Summary

Two important interest rates for derivative traders are Treasury rates

and LIBOR rates.

◮ Treasury rates are the rates paid by a government on borrowings in

its own currency.
◮ LIBOR rates are short-term lending rates offered by banks in the

interbank market.
◮ Derivatives traders have traditionally assumed that the LIBOR rate is

the short-term risk-free rate at which funds can be borrowed or lent.

The compounding frequency used for an interest rate defines the

units in which it is measured.

◮ Traders frequently use continuous compounding when analyzing the

value of options and more complex derivatives.
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Summary

Many different types of interest rates are quoted in financial markets

and calculated by analysts.

◮ The n-year zero or spot rate is the rate applicable to an investment

lasting for n years when all of the return is realized at the end.
◮ The par yield on a bond of a certain maturity is the coupon rate that

causes the bond to sell for its par value.
◮ Forward rates are the rates applicable to future periods of time

implied by today’s zero rates.

The method most commonly used to calculate zero rates is known

as the bootstrap method.

◮ It involves starting with short-term instruments and moving

progressively to longer-term instruments, making sure that the zero

rates calculated at each stage are consistent with the prices of the

instruments.
◮ It is used daily by trading desks to calculate a Treasury zero-rate

curve.
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Summary

A forward rate agreement (FRA) is an OTC agreement that the

LIBOR rate will be exchanged for a specified interest rate during a

specified future period of time.

◮ An FRA can be valued by assuming that forward LIBOR rates are

realized and discounting the resulting payoff.

An important concept in interest rate markets is duration.

◮ Duration measures the sensitivity of the value of a bond portfolio to a

small parallel shift in the zero-coupon yield curve.
◮ Specifically

∆B = −BD∆y

where B is the value of the bond portfolio, D is the duration of the

portfolio, ∆y is the size of a small parallel shift in the zero curve, and

∆B is the resultant effect on the value of the bond portfolio.
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Summary

Liquidity preference theory can be used to explain the interest rate

term structures that are observed in practice.

◮ The theory argues that most entities like to borrow long and lend

short.
◮ To match the maturities of borrowers and lenders, it is necessary for

financial institutions to raise long-term rates so that forward interest

rates are higher than expected future spot interest rates.
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