Arbitrage&Pricing Paris Dauphine University - Master IEF (272)

Jérôme MATHIS (LEDa)

Exercises Chapter 1

Exercise 1 There are two periods, $t \in \{0, 1\}$.

There are two assets. One non-risky asset (money that can be borrowed or lend) that returns $r = \frac{1}{4}$ at time 1.

And one risky asset which is a stock of price $S_0 = 4$ at time 0. At date 1, a coin is tossed. The price of the stock at time 1 is $S_1 = \begin{cases} 8 & \text{if Head} \\ 2 & \text{if Tail} \end{cases}$.

Assume our initial wealth is (money) $x = 1.2 \in$ and we want to buy at time 0, $\Delta_0 = \frac{1}{2}$ shares of the stock.

- (a) How much do we have to borrow?
- (b) What is our in debt, I_t , to the money market, at time $t \in \{0, 1\}$?
- (c) What is our stock value, $\Delta_0 S_t$, at time $t \in \{0, 1\}$?
- (d) What is our portfolio value, X_t , at time $t \in \{0, 1\}$?
- (e) At time 1, what is the value of an European call option with underlying asset S and strike K = 5?
- (f) Compare the result of (d) with the one obtained in (e).
- (g) Under NAO, what is the value of our European call option at time 0?

Exercise 2 Consider Exercise 1. Suppose the price of the option at time 0 is $1.21 \in$. Construct an arbitrage portfolio that uses one unit of the option.

Exercise 3 Consider Exercise 1. Suppose the price of the option at time 0 is $1.19 \in$. Construct an arbitrage portfolio that uses one unit of the option.

Exercise 4 Consider a financial market with a money account, a stock, and an European call option on the stock with strike price K = 98.

Suppose at time t = 0, the stock price is $S_0 = 100$ and the price at time t = 1 is either

 $S_1(H) = 112 \text{ or } S_1(T) = 84.$

Suppose the interest rate on the money account is r = 5%.

We want to obtain a no-arbitrage price for the call option.

The following table lists the payoff structure of the financial market.

	t = 0	t = 1, T	t = 1, H
Money	1	1.05	1.05
Stock	100	84	112
Option	?	$(84 - 98)^+ = 0$	$(112 - 98)^+ = 14$

Under NAO, what is the price of the option at time t = 0?

Exercise 5 Suppose the price of the option in Exercise 4 is $5 \in \mathbb{C}$. Construct the arbitrage that uses one unit of the option.

Exercise 6 Suppose the price of the option in Exercise 4 is $15 \in$. Construct the arbitrage that uses one unit of the option.