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Introduction

Chapter 4: Black—Scholes model

Outline

@ In the early 1970s, Fischer Black, Myron Scholes, and Robert
Merton achieved a major breakthrough in the pricing of European

. Myron Scholes in their 1973 paper
e Heuristic Approach o )
» F. Black and M. Scholes, “The Pricing of Options and Corporate

Liabilities,” Journal of Political Economy, 81, 1973: 637-59.

e Example ) . .
@ Robert C. Merton was the first to publish a paper expanding the

mathematical understanding of the options pricing model, and

o Conclusion coined the term "Black—Scholes options pricing model".

e A ndi » R.C. Merton, “Theory of Rational Option Pricing,” Bell Journal of
Ppendix Economics and Management Science, 4, 1973: 141-83.

@ The model has had a huge influence on the way that traders price
and hedge derivatives.
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Introduction
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Introduction

@ Black and Scholes used the capital asset pricing model (CAPM) to
determine a relationship between the market’s required return on
the option to the required return on the stock.

» This was not easy because the relationship depends on both the

stock price and time.
REVOLUTIBNARY

[0EA OF i N @ Merton’s approach was more general than that of Black and
FINANCE > | ; : Scholes because it did not rely on the assumptions of the CAPM.

» It involved setting up a riskless portfolio consisting of the option and

.. T the underlying stock and arguing that the return on the portfolio over
a short period of time must be the risk-free return.

| » It derives the Black-Scholes-Merton model from a binomial tree by

Merton and Scholes received the 1997 Nobel Prize in Economics valuing a European option on a non- dividend-paying stock and
(Black died in 1995) allowing the number of time steps in the binomial tree to approach
| infinity.

» The proof is relegated to the Appendix.
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Chapter 4: Black—Scholes model

Outline

@ The aim of this chapter is to introduce the Black-Scholes formula

» ltis an expression for the current value of a European call option on a 9 Heuristic Apbroach
stock (which pays no dividends before expiration), in a context of PP

instantaneous aribtrage (delta hedging with abritarily small lenght of ° Com!ng Back to the One-I.:’erioc.j Bingmial Model
time). @ Coming Back to the n-Period Binomial Model

@ \olatility Erodes Return

@ We will adopt an heurictic approach by deducing the formula from ® From Binomial to Normal distribution

the results obtained in the previous chapters.

» We will consider the same setup as in these chapters, with same
assumption, except that the lenght of time for the arbitrage (delta
hedging) will be considered as to be abritarily small.
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Heuristic Approach

Coming Back to the One-Period Binomial Model

@ Consider a call option on a stock, with initial price Sg, with exercise
price K, and maturing at time 1.

@ In Chapter 2 (Proposition 2.5) we saw that the absence of arbitrage
opportunities (NAO) implies that the current value of the call must
be

EQ[C4] _ qC{ +(1-q)Cf
Co = =
14r 14r

where Q such that g = % is the equivalent martingale measure.

@ When d < r < u the option will be exercised if the stock price goes
up (S1 = uSp), and it will expire worthless if the stock price goes
down (81 = dSo)
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Heuristic Approach

Heuristic Approach

Coming Back to the n-Period Binomial Model

@ Consider now that the call option matures at time T for which there
are n intermediate market valuations of the stock.

@ In Chapter 3 we saw that the absence of arbitrage opportunities
(NAO) implies that the current value of the call must be

_ EQ[CT] _ n (Z)qk (1 . q)n—k C#kdn_k
_(1-1-1’)”_2 (1+r)n

k=0

where QQ such that g = % is the equivalent martingale measure.
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Heuristic Approach

Coming Back to the One-Period Binomial Model

@ So, CY = uSy — K and C¢ = 0. We can rewrite the previous call
price formula like this:

_quSo—K) [ qu K
Co = 14r S\ 1+4r So q1+r

@ The factor ﬁ—fr equals the factor by which the discounted expected
value of contingent receipt of the stock exceeds the current value of
the stock.

@ Reasonning with continuous coupounding we would have

Co= (e "qu) So —qe 'K
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Coming Back to the n-Period Binomial Model

@ Reasonning with continuous coupounding we would have
n n k k
_ —k n—
Co=e"" kE_O <k> g (1—q) " cye.

@ When d < r < u there is a minimum number of upward moves
necessary for the option to be exercised.

» We say that the option is in the money.

» Let a denotes this minimum number.

» The option will then be exercised if the stock price goes up by at least
atimes (St > u?d"4Sy), and it will expire worthless if the stock price
goes down by less than a times(S7 < u?d"~28Sy).
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Heuristic Approach Heuristic Approach

Coming Back to the n-Period Binomial Model From Binomial to Normal distribution

k qn—k i
ukgn—k [ utd" " Sy - Kifk > a
° So. Gy - { 0 otherwise

@ Hence, we can rewrite the previous call price formula like this:

Co = e—rTEH: <Z> g (1—q)"* (ukdn—kso _ K) '
k=a
- (e-” S (n’”_ i @) (@ (1 - q))"—“> So
k=a ’

n
_ n! k(4 _ ~\n—k o—rT
kz:;k!(n—k)!q (1=q)y e ™K
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Heuristic Approach Heuristic Approach

Volatility Erodes Return From Binomial to Normal distribution

@ Consider S; =100, u =1.1,and d = 0.9.

» What is the value of S§9?
> What is the value of S¥°°?

@ Compute now the same values for u = 1.3, and d = 0.7.

» What do you obtain?
» Conclude.

Property
Volatility erodes returns. :
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Heuristic Approach Heuristic Approach

From Binomial to Normal distribution From Binomial to Normal distribution

S&P500 - weekly Return Histogram (1928 - 2018)
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Heuristic Approach
From Binomial to Normal distribution

Heuristic Approach

@ In the following, we will use the cumulative probability distribution
function for a standardized normal distribution, denoted as N (x)

S&P 500 Index - monthly Return Histogram (1928-2018) @ N(x) is then the probability that a variable with a standard normal
distribution will be less than x.
Shaded area represents N(x).

|H||

r = .J‘!n!m”lh

bl - R~ - - -l = O ¥ ¥ ¥ ¥ R R E® v < ~ B < I =
R R ER 3 = R R R R R
RERNRDODhBEMDODES T~ROANDODOSR DGO N % A& S &5 Bk
GIHdWNMORNINAIOUMAdITRaNN~OMNE®dY
W 1N N OO~ O MON - O A M™NM< O™~ 0O S N MWL W
= e I | . e B T B B

Jérdbme MATHIS (LEDa) Arbitrage&Pricing Chapter 4 18/59 Jérome MATHIS (LEDa) Arbitrage&Pricing Chapter 4 20/59



Heuristic Approach Heuristic Approach

From Binomial to Normal distribution Log return normally distributed

@ Black-Scholes assume that the stock price at time T (and any
subsequent time ¢, replacing T with t) is

St = SoR(T)

0.3 0.4

where the log return of the stock price is normally distributed under
the equivalent martingale measure Q, with mean (r - %02) T and

variance 02T
INR(T) 2N <<r - %az) T,aZT)

» the expected returns are independent of the stock price;
» the stock price only takes positive values;
» the stock price is continuous everywhere but differentiable nowhere.

0.2

34.1%| 34.1%

0.0 0.1

@ It means that:

Heuristic Approach Heuristic Approach
From Binomial to Normal distribution Log return normally distributed
BNP PARIBAS ACT.A
EBNPPA o6
@ Taking into account that volatility erodes returns, we will use that if -
the log return of a stock price is normally distributed then its mean A 0
is not r but is instead (r — 02).
» Said differently, for a normal distribution, volatility erodes returns -

about half the variance.
© Yahoo!
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Heuristic Approach Heuristic Approach

Log return normally distributed Log return normally distributed

@ In an attempt to make the model for stock prices more realistic,
NP PARIBAS ACTA some papers drop the assumption that the volatility is constant.

MENRPA @ » A model that assumes that the volatility is a deterministic function of
the stock price and time is called local volatility model.

el
& -
=

o
&
<

015

01

© Yahco!

005

nov-15 janv-16 mars-16 mai-16 juil-16 sept-16

0.00

Jérdbme MATHIS (LEDa) Arbitrage&Pricing Chapter 4 25/59 Jérome MATHIS (LEDa) Arbitrage&Pricing Chapter 4 27159

Heuristic Approach Heuristic Approach
Log return normally distributed Black-Scholes Formula

@ In this setup, the absence of arbitrage opportunities (NAO) implies
that the current value of the call must be

Co = e~ TE®[Cr]

BNP PARIBAS ACTA
HEEBNP.PA

@ From
ST—KifST>K

480 _ _ +
M Cr=(S1-K) { 0 otherwise
= we have

Co = e TEY(Sr~K)']

165 = e_’TE@[ST — K‘ST > K]
— e (E@[ST|ST > K] - E9[K|St > K])
lun Ssept mar 6sept mer 7sept jeu Bsept ven 9sept

e "TEQ[S7|ST > K] — e "TKQ[ST > K]
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Heuristic Approach Heuristic Approach

Black-Scholes Formula Black-Scholes Formula

@ Let us first compute Q[St > K]. @ Now let us compute EQ[S7|ST > K].
» From Sr = SoR(T) we have

NSy =InSy+InR(T).

Property

[FInX ~ N (1, 52) then E[X|X > K] = e*+ 7 A (sinrc,

» From ] s
|nR(T)ﬁ(%N<(r——o2> T,02T> T _
2 @ Using this Property, with
we have ] 0 1
nsr N (inso (¢ 1) 7.00) nSr &N (inSo + (r- 502) 7,077 )
» So, s? _1 o217
° InSt —E[InS7] ¢ N (0.1) we have e+ % =enSo+(r=37%)T+%" _ghSo+T _5perT and
VV[InS7] ’ p+s?2—InK  InSg+ (r—302) T+02T —InK
» Thatis s N 02T
InSt — (INSo + (r — 102) T
S gy
2T
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Heuristic Approach Heuristic Approach

Black-Scholes Formula Black-Scholes Formula

@ Now, let us denote NV (x) := P[X < x] when X ~N (0,1). @ Hence, according to the Property we have
» So we have In%—k(r—i—%az)T
PX >x]=1-N(x) =P[X < —x] = N(—x) 02T
» Using that Sr > K is equivalent to

InS7 — (InSO+ (r—%oz) T) - InK — (InSo+ (r—%az) T)

EQ[ST‘ST > K] = SoerT./\/ (

@ Therefore
Co = e "TEY[S7|ST > K] — e "TKQ[ST > K].

a?T a?T .
» We obtain with
INK — (InSo + (r — 30%) T) ~TRQ n@+(r+30°)T
OISy > K] _N<_ —(nSo+ (=37 ) e~ TEY[S7|ST > K] = S’ _
o?T o?T
» Thatis and
NS4 (r— 102 T n®+(r—30%T
St >K]=N K 2 Sr>K|=N
Q[ T > ] ( O'\/T Q[ T ] 0_27_
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Heuristic Approach Chapter 4: Black—Scholes model

Black-Scholes Formula Outline

@ We are now able to state the Black-Scholes Formula.

Theorem (Black-Scholes-Merton Formula for Call Option)

The price of European call, Cy, write as

Co = SoN(dy) — Ke " N (dy) © Example

where ,
_ @)+ + )T

VT

and
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Heuristic Approach
Black-Scholes Formula

@ Similarly, with the same d4 and d, of the previous Theorem, we
have obtain the price of a Put with similar characteristics. The stock price 6 months from the expiration of an European option is
$42, the exercise price of the option is $40, the risk-free interest rate is

Corollary (Black-Scholes-Merton Formula for Put Option) 10% per annum, and the volatility is 20% per annum.

The price of European put, Py, write as

What are the values of the European call and put?

Py = Ke " N(—d) — SoN (—dy)
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Chapter 4: Black—Scholes model

Outline

o Conclusion
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Conclusion

@ According to the Black-Scholes Formula, the prices of European
call, Cy, and European put, Py, on a non dividend paying stock with
initial price Sy, and volatility o, with a strike K and maturity T, when
the risk-free interest rate is r write as

Co = So(dh) — K™ T (d) Appendix

Py = Ke " N (—dz) — SoN(—d4)
where N/ (-) denotes the cumulative probability distribution function
for a standardized normal distribution,

(@) +(r+ )T

d =
! VT

and

and
2

So _o?
dr = In(&) ?:\(/,'T 2)T =dy—oVT
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Proving the Black-Scholes-Merton Result

@ Suppose that a tree with n time steps is used to value a European
call option with strike price K and life T.

» Each step is of length L.
» If there have been j upward movements and n — j downward
movements on the tree, the final stock price is

Soujd”_f
where u is the proportional up movement, d is the proportional down

movement, and S; is the initial stock price.
» The payoff from a European call option is then

max(Sot/d" — K, 0).

Chapter 4: Black—Scholes model

Outline

e Appendix @ From the properties of the binomial distribution, the probability of
exactly j upward and n — j downward movements is given by

(n_n—lj)lj'P/(1 —p)"™
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Proving the Black-Scholes-Merton Result Proving the Black-Scholes-Merton Result

. ary/ I —oy /I . "
@ |t follows that the expected payoff from the call option is @ Sinceu=e \ﬁ andd =e \/7 this condition becomes
n | _ . o So . T , T
> 51— p)y"T max(Setdd™ — K, 0) In <7> > —joy[ - = (n=j)(=oy/ )
= (n=7)y!
that is
@ As the tree represents movements in a risk-neutral world, we can So T _ T
discount this at the risk-free rate r to obtain the option price: In <7> >noy| — = 2jo r
n nl ) _ ) _ or
c=e"T> T __p(1-p)"Imax(So/d" ¥ —K,0) (1) , I (%)
2 20\/;
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Proving the Black-Scholes-Merton Result Proving the Black-Scholes-Merton Result

@ The option is in the money when the final stock price is greater than @ Equation (1) can therefore be written

the strike price, that is, when I . . . .
P c=eTS T __pi(1— p)i(Seuid™ — K)
Sot/d" > K =2 (n=J)y!

where

In (%) > —jIn(u) — (n—j)In(d) o=

or
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Proving the Black-Scholes-Merton Result

@ For convenience, we define

Proving the Black-Scholes-Merton Result

Consider U_{2}

ui=Y (n_”—!j)!j!pfm _pyiuigni

j>a
@ Substituting for «,, we obtain
and |
n! ; ;
U = —_— 1— n= S

2 ;(n—j)!j!pj( P) Uy N In<7°) +\/ﬁ(p—%)

so that 20V/T/p(1=p)  /pP(1-p)
c=e""T(SUs — KU,). )

@ Both U and U, can now be evaluated in terms of the cumulative
binomial distribution.

@ We now let the number of time steps tend to infinity and use the
result that a binomial distribution tends to a normal distribution.
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Proving the Black-Scholes-Merton Result Proving the Black-Scholes-Merton Result
Consider U_{2} Consider U_{2}
@ As is well known, the binomial distribution approaches a normal @ From (see Chapter 11)
distribution as the number of trials approaches infinity. u = g’ VAt
» Specifically, when there are n trials and p is the probability of d = e—a\/E
success, the probability distribution of the number of successes is -
approximately normal with mean np and standard deviation and
vnp(1—p). _eAl—d
@ U, is the probability of the number of successes being more than a. u—d
@ From the properties of the normal distribution, it follows that, for with At = I we have
large n,

A

np — « efn — e—a
Uy =N[—2—2 p=
< np(1 _p)> ea\/;_ e—aﬁ

where N is the cumulative normal distribution function.
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Proving the Black-Scholes-Merton Result

Proving the Black-Scholes-Merton Result

Consider U_{2}

@ By expanding the exponential functions in a series, we see that, as

n tends to infinity, p(1 — p) tends to § and y/n(p — 3) tends to

(r=5)VT
20

so that in the limit, as n tends to infinity, we finally obtain

So _
UZN(In(K>+(r Z)T) = N (dy)

oVT
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Proving the Black-Scholes-Merton Result
Consider U_{1}

Consider U_{1}

@ It then follows that

pu+ (1 —p)d

and

U1 = Z(n—| (p* (pU-l— (1 _p)d))l

= n—j)Yj!
[(1—=p") (pu+(1- )d)]”_j
= [pu+(1=p)d]" Y ——r = J'J' (Y (1
j>a
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Proving the Black-Scholes-Merton Result
Consider U_{1}

@ U, rewrites as
_ n—j
>«
@ Define

. pu
P bt (1 p) v
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@ Since the expected return in the risk-neutral world is the risk-free
rate r, it follows that

[pu + (1 —p)d]” = &7
and

r n! *\/ n—
U1ZGT;W(P)1(1—P) !

@ This shows that U, involves a binomial distribution where the
probability of an up movement is p* rather than p.
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Proving the Black-Scholes-Merton Result

Proving the Black-Scholes-Merton Result

Consider U_{1}

@ Approximating the binomial distribution with a normal distribution,

we obtain @ Finally, from equation (2) we have
U=e N | P = c=e T (SoUs — KUy)
np* (1 — p*)

and substituting for « gives for Us that is SN (dh) — Ko~ Al(d)

C =9 1) — Re ).
s
o n (%) Vi~ }) QED
U =¢e"N +
20VT\/p*(1—p*)  /p*(1—p*)
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Proving the Black-Scholes-Merton Result

Consider U_{1}

@ Substituting for u and d in equation in equation (3) gives

T —oy/ I T
= e'n—e 'Vn Vi
ea\/; _ e—a % er%

@ By expanding the exponential functions in a series we see that, as n
tends to infinity, p*(1 — p*) tends to 7 and y/n(p — 3) tends to

with the result that
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