Outline Arbitrage&Pricing Paris Dauphine University - Master I.E.F. (272) Introduction 2023/24 **Binomial Trees: Two-Step** Jérôme MATHIS www.jeromemathis.fr/a-p **If important decisions are taken every five years of the state of the metal investor has approximately 50 years of adult life when making choices over savin** LEDa Chapter 3 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 3 $1/68$

Chapter 3: Binomial tree with n period Outline

- Introduction
- **Binomial Trees: Two-Step**
- **Binomial tree: generalization**
- Conclusion

- - -
	-

Chapter 3: Binomial tree with n period

Introduction

• Consider Example D of Chapter 2:

- The aim of this chapter is to introduce the techniques to asset pricing in a dynamic framework.
	- \triangleright We use a simple set-up with the European call option as a focus asset in a discrete-time model:
		- \star to illustrate the backward recursive pricing procedure; and
		- \star to recover the option price as an unconditional expectation under risk-neutral probabilities.

A 3-month call option on the stock has a strike price of 21.

Arbitrage&Pricing

Binomial tree: generalization

Conclusion

Binomial Trees: Two-Step

• Applying the formula

Jérôme MATHIS (LEDa)

$$
C_0=\frac{1}{R}\left(\frac{R-d}{u-d}C_1^u+\frac{u-R}{u-d}C_1^d\right)
$$

to the 3 months risk-free interest rate of 3.05%, we found the initial price of the option:

$$
C_0=\frac{1}{1.0305}\left(\frac{1.0305-0.9}{1.1-0.9}\right)\simeq 0.633
$$

Chapter 3

Binomial Trees: Two-Step

- We also obtained the same initial price of the option using a risk-neutral valuation.
- \bullet Indeed, by denoting q the probability that gives a return on the stock equal to the risk-free rate:

$$
S_0(1+r) = S_1^u q + S_1^d(1-q).
$$

• The value of the option is

$$
C_0 = \frac{C_1^u q + C_1^d (1-q)}{1+r}
$$

• So that in Example $D^{(5)}$ we obtained

$$
20(1.0305) = 22q + 18(1 - q).
$$

so that $q = 0.6525$. And

$$
C_0=\frac{1\times 0.6525+0(1-0.6525)}{1.0305}\simeq 0.6332.
$$

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Binomial Trees: Two-Step

- Let us extend this example to a two-step binomial tree.
- Assume the stock price starts at \$20 and in each of two time steps may go up by 10% or down by 10%.
	- Each time step is 3 months long and 3 months risk-free interest rate of $3.05%$.
	- \triangleright We consider a 6-month option with a strike price of \$21.

Binomial Trees: Two-Step

• When the stock price is 22, the option price is

$$
\frac{0.6525 \times 3.2 + 0.3475 \times 0}{1.0305} = 2.0262
$$

- When the stock price is 18, the option price is zero, because it leads to two nodes where the option price is zero.
- The initial option price is

$$
\frac{0.6525 \times 2.0262 + 0.3475 \times 0}{1.0305} = 1.283
$$

Arbitrage&Pricing

 $11/68$ Chapter 3

Binomial Trees: Two-Step Generalization

- Suppose that the risk-free interest rate is r , with continuous compounding, and the length of the time step is Δt years.
- We have

$$
C_0 = [qC_1^u + (1-q)C_1^d]e^{-r\Delta t}
$$

$$
q = \frac{e^{r\Delta t} - d}{u - d}
$$

$$
C_1^u = [qC_2^{uu} + (1-q)C_2^{ud}]e^{-r\Delta t}
$$

and

$$
C_1^d = [qC_2^{du} + (1-q)C_2^{dd}]e^{-r\Delta t}
$$

• So, when $C_2^{du} = C_2^{ud}$ we obtain

$$
C_0=[q^2C_2^{uu}+2q(1-q)C_2^{ud}+(1-q)^2C_2^{dd}]e^{-2r\Delta t}
$$

Chapter 3

Question

Consider a 2-year European put with a strike price of \$52 on a stock whose current price is \$50.

Binomial Trees: Two-Step A Put Option Example

Binomial Trees: Two-Step Delta

Delta (\triangle) is the ratio of the change in the price of a stock option to the change in the price of the underlying stock.

- It is the number of units of the stock we should hold for each option shorted in order to create a riskless portfolio.
	- It is the same as the Δ introduced earlier in this and previous chapters.
- The construction of a riskless portfolio is sometimes referred to as delta hedging.
- The delta of a call option is positive, whereas the delta of a put option is negative.
- The value of Δ varies from node to node.
	- E.g., when the stock price changes from \$18 to \$22, and the option price changes from \$0 to \$1, we have $\Delta = \frac{1-0}{22-18} = 0.25$.

```
Jérôme MATHIS (LEDa)
```
Arbitrage&Pricing

Chapter 3: Binomial tree with n period Outline

Introduction

Binomial Trees: Two-Step

Binomial tree: generalization

- Basic notions on Probability
- \bullet Setup
- Simple portfolio strategies
- Arbitrage and risk-neutral probability
- Hedging derivative

Conclusion

Definition Definition

A filtration is a sequence of σ -algebra $(\mathcal{F}_k)_{1 \leq k \leq n}$, such that each previous σ -algebra. Formally, $\mathcal{F}_k \subset \mathcal{F}_{k+1}$, $\forall k < n$.

A filtration model is a sequence of σ **-algebra** $(\mathcal{F}_k)_{1 \leq k \leq n}$ **, such that each algebra in the sequence contains all the sets contained by the violous** σ **-algebra. Formally,** $\mathcal{F}_k \subseteq \mathcal{F}_{k+1}, \forall k < n$ **.
A filtrati reneralization**
 obability
 a ence of σ -algebra $(\mathcal{F}_k)_{1\leq k\leq n}$, such that each
 quence contains all the sets contained by the
 Formally, $\mathcal{F}_k \subseteq \mathcal{F}_{k+1}, \forall k < n$ **.**
 s the evolution of information thr

Definition

is a filtration then \mathcal{F}_k is known.

Ablinge^{88riding}
 inspiring the chapter of the chapter of the chapter of the state of the chapter of the state o

Proposition (3.1)

Proof.

Straightforward.

 F_i -measurable.

Chapter 3 17/68

Definition

The **natural filtration** of the stochastic process $(X_k)_{1 \leq k \leq n}$ is given by the smallest filtration $\mathcal F$ for which $(X_k)_{1 \leq k \leq n}$ is $\mathcal F$ -adapted.

We denote it by $\mathcal{F}^X := (\mathcal{F}_k^X)_{1 \leq k \leq n}$, with \mathcal{F}_k^X the σ -algebra generated by X_k .

I.e., $\mathcal{F}_k^X := \sigma(X_1, X_2, ..., X_k)$.

• If $M := (M_k)_{1 \leq k \leq n}$ is a $\mathcal{F}-$ **martingale** under $\mathbb P$ then

$$
\mathbb{E}^\mathbb{P}[M_k|\mathcal{F}_i]=M_i \text{ , for any } i\leq k
$$

and in particular, we have

 $\mathbb{E}^{\mathbb{P}}[M_k]=M_0.$

- \bullet We extend the model of the previous chapter to n periods.
- \bullet We consider an interval of time [0, T] divided into *n* periods: $0 = t_0 \le t_1 \le ... \le t_n = T$.
- There are two assets:
	- A non-risky asset S_t^0 :

$$
1 \rightarrow (1+r) \rightarrow (1+r)^2 \rightarrow \dots \rightarrow (1+r)^n
$$

A risky asset S_t that evolves according to the following Table

winning) game.

 \bullet The order of occurrence of u and d 's does not count. So, the tree recombines (e.g., $du^2S_0 = udu S_0 = u^2dS_0$). At time t the asset may then only take $t + 1$ values. (If the order would have count we would have obtained 2^t values.)

• At date t Nature selects $\omega_t \in {\{\omega_t^u, \omega_t^d\}}$. So

$$
\Omega:=\{(\omega_1,\omega_2,...,\omega_n)\,|\forall i\in\{0,1,...,n\}\text{ we have }\omega_i=\omega_i^u\text{ or }\omega_i=\omega_i^d\}.
$$

We assume that the probability of occurrence of u is time-invariant:

$$
\mathbb{P}\left(\omega_i=\omega_i^u\right)=p
$$

and

$$
\mathbb{P}\left(\omega_i=\omega_i^d\right)=1-p.
$$

 \bullet So

 $\mathbb{P}\left(\omega_1,\omega_2,...,\omega_n\right)=p^{\#\left\{i\in\left\{0,1,...,n\right\}\left|\omega_i=\omega_i^u\right\}\right.}\times\left(1-p\right)^{\#\left\{i\in\left\{0,1,...,n\right\}\left|\omega_i=\omega_i^d\right\}\right.}.$

• The value of the asset at time t_i , can be written as

$$
S_{t_i} = S_0 \prod_{k=0}^i Y_k
$$

with $(Y_k)_{k=0,...,n} : \Omega^{n+1} \longmapsto {u, d}^{n+1}$ being a collection of random variables i.i.d., with Y_k is realized at time k , and takes the value u with probability p and d with probability $(1 - p)$.

• So we have

$$
\mathbb{P}\left(Y_i = u\right) = \mathbb{P}\left(\omega_i = \omega_i^u\right) = \rho
$$

and

$$
\mathbb{P}\left(Y_i=d\right)=\mathbb{P}\left(\omega_i=\omega_i^d\right)=1-p.
$$

 $25/68$

 $er 3$

Binomial tree: generalization

Set-up

• The information available at time t_i is given by the filtration
 $(\mathcal{F}_{t_k})_{1 \leq k \leq i}$, with
 $\mathcal{F}_t := \sigma(\omega_1, \omega_2, ..., \omega_i) = \sigma(Y_1, Y_2, ..., Y_i) = \sigma(S_{t_1}, S_{t_2}, ..., S_{t_i})$.

Definition (Mathe

$$
\mathcal{F}_{t_i} := \sigma(\omega_1, \omega_2, ..., \omega_i) = \sigma(Y_1, Y_2, ..., Y_i) = \sigma(S_{t_1}, S_{t_2}, ..., S_{t_i}).
$$

Arbitrage&Pricing

Chapter 3 29/68

Chapter 3: Binomial tree with n period Outline

Introduction

Binomial Trees: Two-Step

Binomial tree: generalization

- Basic notions on Probability
- \bullet Setup
- Simple portfolio strategies
- Arbitrage and risk-neutral probability
- Hedging derivative

Conclusion

Example portfolio strategies

is given by the filtration

is given by the filtration
 $\mathsf{Y}_2, ..., \mathsf{Y}_i$) = $\sigma(S_{t_1}, S_{t_2}, ..., S_{t_i})$.
 Y_{t_i} We denote this strategy by the pair (
 $\mathsf{X}_{t_i}^{\mathsf{x}, \Delta}$.

Definition

- Mathetical translapsing the method of the method of the portfolio strategy consists in an initial amount of cash x

to chastic process $\Delta := (\Delta_k)_{0 \leq k \leq n-1}$ which is \mathcal{F} adapted.

ote this strategy by the pair $(x$
	-
	-
	-

• Between period t_i and t_{i+1} , the portfolio takes the form of Δ_i units of risky asset and $\frac{X_t^{x,\Delta}-\Delta_i S_{t_i}}{(1+r)^i}$ units of non-risky asset. So, the value of the portfolio at time t_i is given by Fran at date t_i we invest into the risky asset in quantity Δ_i .

For process is $\mathcal{F}-$ adapted because the amount of investment at

date t_i sis determined using the information available at date t_i .

This simple

$$
X_{t_i}^{x,\Delta} = \Delta_i S_{t_i} + \frac{X_{t_i}^{x,\Delta} - \Delta_i S_{t_i}}{\left(1+r\right)^i} \left(1+r\right)^i.
$$

inserted during the time interval $[t_i, t_{i+1})$, so we have

$$
X_{t_{i+1}}^{x,\Delta} = \Delta_i S_{t_{i+1}} + \frac{X_{t_i}^{x,\Delta} - \Delta_i S_{t_i}}{(1+r)^i} (1+r)^{i+1}.
$$

- \bullet Let \tilde{Z} denotes the current value of the variable Z at date $t = 0, 1, ..., n$.
	- So, the current value of the portfolio X at date t_i writes as

$$
\tilde{X}_{t_i}^{x,\Delta} := \frac{X_{t_i}^{x,\Delta}}{(1+r)^i}
$$

and the current value of the risky asset at date t_i writes as

Arbitrage&Pricing

$$
\tilde{\mathsf{S}}_{t_i} := \frac{\mathsf{S}_{t_i}}{\left(1+r\right)^i}.
$$

normal tree: generalization

\nimple portfolio strategies

\nFrom

\n
$$
\tilde{X}_{t_i}^{x,\Delta} = \tilde{X}_{t_i}^{x,\Delta} + \left(\Delta_i \tilde{S}_{t_i} - \Delta_i \tilde{S}_{t_i}\right)
$$
\n
$$
= \Delta_i \tilde{S}_{t_i} + \left(\tilde{X}_{t_i}^{x,\Delta} - \Delta_i \tilde{S}_{t_i}\right)
$$
\nwe obtain the self-financing condition

\n
$$
\tilde{X}_{t_{i+1}}^{x,\Delta} - \tilde{X}_{t_i}^{x,\Delta} = \Delta_i \left(\tilde{S}_{t_{i+1}} - \tilde{S}_{t_i}\right).
$$
\nThis condition can be rewritten as

\n(1)

$$
\widetilde{X}_{t_{i+1}}^{x,\Delta}-\widetilde{X}_{t_i}^{x,\Delta}=\Delta_i\left(\widetilde{S}_{t_{i+1}}-\widetilde{S}_{t_i}\right).
$$
\n(1)

$$
\tilde{X}_{t_{i+1}}^{x,\Delta}=x+\sum_{k=0}^{i}\Delta_{k}\left(\tilde{S}_{t_{k+1}}-\tilde{S}_{t_{k}}\right).
$$

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 3 $35/68$

Binomial tree: generalization Arbitrage and risk-neutral probability

Definition

A simple arbitrage is a simple portfolio strategy that gives to a it is a pair $(x = 0, \Delta)$ with $\Delta \in \mathbb{R}^n$ such that

$$
X^{0,\Delta}_\mathcal{T} \geq 0 \text{ and } \mathbb{P}(X^{0,\Delta}_\mathcal{T} > 0) > 0.
$$

Definition

We say that there is no simple arbitrage opportunity (NAO') if

$$
\forall \Delta \in \mathbb{R}^n \ \{X^{0,\Delta}_\mathcal{T} \geq 0 \implies X^{0,\Delta}_\mathcal{T} = 0 \ \mathbb{P}-a.s.\}
$$

Jérôme MATHIS (LEDa)

Chapter 3

 $33/68$

Binomial tree: generalization Simple portfolio strategies

• So we have

$$
\tilde{X}_{t_{i}+1}^{x,\Delta} = \frac{X_{t_{i}+1}^{x,\Delta}}{(1+r)^{i+1}}
$$
\n
$$
= \frac{\Delta_{i}S_{t_{i+1}} + \frac{X_{t_{i}}^{x,\Delta} - \Delta_{i}S_{t_{i}}}{(1+r)^{i+1}}}{(1+r)^{i+1}}
$$
\n
$$
= \Delta_{i}\tilde{S}_{t_{i}+1} + \frac{X_{t_{i}}^{x,\Delta} - \Delta_{i}S_{t_{i}}}{(1+r)^{i}}
$$
\n
$$
= \Delta_{i}\tilde{S}_{t_{i}+1} + (\tilde{X}_{t_{i}}^{x,\Delta} - \Delta_{i}\tilde{S}_{t_{i}}).
$$
\nDefinition

\nWe say that the

Proposition (3.2)

If NAO' then $d < 1 + r < u$.

Proof.

We proceed by contradiction. Assume NAO' and $d > 1 + r$.

Consider the following simple arbitrage strategy:

- buy one unit of the risky asset: and
- sell the equivalent amount of the non risky asset in period $t = 0$;
- then resell the unit of the risky asset at time t_1 : and
- invest it into the non-risky asset until period T
- (i.e., $x = 0$, $\Delta_0 = 1$, and $\Delta_i = 0$ for any $i \ge 1$). (...)

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 3 $37/68$

 \Box

Binomial tree: generalization Arbitrage and risk-neutral probability

Proof.

 $\left(\ldots \right)$

Such a strategy is deterministic so it is $\mathcal{F}-$ adapted. At date $T = t_n$ the portfolio value is given by:

$$
\begin{array}{lcl} \tilde{\mathsf{X}}_7^{0,\Delta} & = & 0 + \sum\limits_{k=0}^{n-1} \Delta_k \left(\tilde{\mathsf{S}}_{t_{k+1}} - \tilde{\mathsf{S}}_{t_k} \right) \\ \\ & = & \tilde{\mathsf{S}}_{t_1} - \tilde{\mathsf{S}}_{t_0} \end{array}
$$

Binomial tree: generalization Arbitrage and risk-neutral probability

Proof.

Since S_t , can only takes two values (either uS_0 or dS_0), the portfolio value at time T is either

$$
(1+r)^n S_0 \left(\frac{u}{(1+r)} - 1 \right) > 0
$$

or

$$
(1+r)^n S_0\left(\frac{d}{(1+r)}-1\right)\geq 0
$$

which contradicts NAO', since both values occur with strictly positive probabilities (resp. p and $(1-p)$). (...) \Box

Arbitrage and risk-neutral probability

Proof.

Similarly, we obtain a contradiction by assuming $u < 1 + r$ and by considering the simple arbitrage strategy that consists in:

- selling one unit of the risky asset; and
- buying the equivalent amount of the non risky asset in period $t = 0$;
- I.e., $x = 0$, $\Delta_0 = -1$, and $\Delta_i = 0$ for any $i > 1$.

 \Box

 \Box

• Consider the following probability on Ω :

$$
\mathbb{Q}(\omega_1, \omega_2, ..., \omega_n) = q^{\# \{i \in \{1, ..., n\} | \omega_i = \omega_i^u\}} \times (1 - q)^{\# \{i \in \{1, ..., n\} | \omega_i = \omega_i^d\}}
$$

$$
q:=\frac{(1+r)-d}{u-d}.
$$

$$
\mathbb{Q}\left(S_{t_i}=uS_{t_{i-1}}\right)=\mathbb{Q}\left(Y_i=u\right)=q
$$

$$
\mathbb{Q}\left(S_{t_i}=dS_{t_{i-1}}\right)=\mathbb{Q}\left(Y_i=d\right)=1-q.
$$

Chapter 3

42/68

Proposition (3.3)
$\tilde{S} := \left(\tilde{S}_{t_i} \right)_{i \in \{1, 2, \ldots, n\}}$ is a <i>F</i> —martingale under Q.
Proof.
Clearly, $\tilde{S}_{t_i} := \frac{S_{t_i}}{(1+r)^i}$ is \mathcal{F}_{t_i} —measurable for each $i \leq n$, so \tilde{S} is \mathcal{F} —adapted.(...)

Q (c_{it, either} and $q := \frac{(1-r)-d}{u-d}$.

We then have
 $\mathbb{Q}\left(S_b = uS_{b-1}\right) = \mathbb{Q}\left(Y_i = u\right) = q$

and $\mathbb{Q}\left(S_b = uS_{b-1}\right) = \mathbb{Q}\left(Y_i = u\right) = q$

and $\mathbb{Q}\left(S_b = uS_{b-1}\right) = \mathbb{Q}\left(Y_i = u\right) = q$

Let us show that Q is a risk-neutral pro \Box

Binomial tree: generalization Arbitrage and risk-neutral probability

• The following result states that if the current values of the standard assets are martingale under a given probability then it is so of the current value of any simple portfolio strategy.

Proposition (3.4)

$$
\mathbb{E}^{\mathbb{Q}}[\tilde{X}_{t_{i+1}}^{x,\Delta}-\tilde{X}_{t_i}^{x,\Delta}|\mathcal{F}_{t_i}]=0.
$$

$$
\mathbb{E}^{\mathbb{Q}}[\tilde{X}_{t_{i+1}}^{\mathsf{x},\Delta}-\tilde{X}_{t_{i}}^{\mathsf{x},\Delta}|\mathcal{F}_{t_{i}}]=\mathbb{E}^{\mathbb{Q}}[\Delta_{i}\left(\tilde{\mathsf{S}}_{t_{i+1}}-\tilde{\mathsf{S}}_{t_{i}}\right)|\mathcal{F}_{t_{i}}]
$$

SO

$$
\mathbb{E}^{\mathbb{Q}}[\tilde{X}_{t_{i+1}}^{x,\Delta}-\tilde{X}_{t_{i}}^{x,\Delta}|\mathcal{F}_{t_{i}}]=\Delta_{i}\mathbb{E}^{\mathbb{Q}}[\tilde{\mathbf{S}}_{t_{i+1}}-\tilde{\mathbf{S}}_{t_{i}}|\mathcal{F}_{t_{i}}]=\mathbf{0}
$$

where the last equality comes from the previous Proposition.

Binomial tree: generalization Arbitrage and risk-neutral probability

Theorem (3.5)

If $d < R < u$ then there is an equivalent martingale measure \mathbb{O} .

$$
X_{t_i}^{x,\Delta}=\frac{\mathbb{E}^{\mathbb{Q}}[X_T^{x,\Delta}|\mathcal{F}_{t_i}]}{(1+r)^{n-i}}.
$$

-
-

 \Box

Proof.

As in the previous chapter, let $\Delta \in \mathbb{R}^n$ such that $X^{0,\Delta}_\tau \geq 0$.

Since $\mathbb O$ is an equivalent martingale measure, we have

$$
\mathbb{E}^{\mathbb{Q}}\left[X_{\mathcal{T}}^{x=0,\Delta}\right]=x=0
$$

Which means that $X^{0,\Delta}_{\tau}$ is a random variable that is positive and whose expected value is zero.

This variable is then equal to zero $\mathbb{O} - a.s$.

Finally, since $\mathbb Q$ is equivalent to $\mathbb P$ we obtain $\mathbb P\left(X^{0,\Delta}_\mathcal{T}>0\right)=0.$

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 3 49/68

 \Box

Binomial tree: generalization Arbitrage and risk-neutral probability

• From Proposition 3.2

$$
\mathsf{NAO}' \Longrightarrow d < R < u
$$

- From Theorem 3.5
	- $d < R < u \Longrightarrow$ there is an equivalent martingale measure
- From Proposition 3.6 we have

there is an equivalent martingale measure \implies NAO'

• Hence we obtain

 $NAO' \iff d < R < u$

 \iff there is an equivalent martingale measure.

• Saving that

"the current values of every standard asset is martingale under Q"

is then equivalent to say that

"the current value of every simple portfolio strategy is martingale under Q'' .

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 3 51/68 Chapter 3: Binomial tree with n period Outline Introduction **Binomial Trees: Two-Step Binomial tree: generalization** • Basic notions on Probability

- \bullet Setup
- Simple portfolio strategies
- Arbitrage and risk-neutral probability
- Hedging derivative

Conclusion

Theorem (3.7)

In our market, every derivative is replicable by using a simple portfolio strategy (x, Δ) .

Question

What is the form of (x, Δ) ?

• We are looking at for a simple portfolio strategy (x, Δ) replicating a derivative of value C_T at date T. Since C_T is \mathcal{F}_{t_n} -adapted, the value of the derivative takes the form of a function $\phi(S_{t_1}, S_{t_2},..., S_{t_n})$ so (x, Δ) has to satisfy

$$
X_{t_n}^{x,\Delta} = \phi(S_{t_1}, S_{t_2}, ..., S_{t_n}).
$$

Arbitrage&Pricing

Jérôme MATHIS (LEDa)

Chapter 3

Binomial tree: generalization Hedging derivative

• According to Proposition 3.4, the current value of every simple portfolio strategy is martingale under the EMM \mathbb{Q} , so the value $X_t^{x,\Delta}$ of the replicating portfolio at date t_k satisfies

$$
X_{t_k}^{x,\Delta} = \frac{\mathbb{E}^{\mathbb{Q}}\left[X_{t_n}^{x,\Delta}|\mathcal{F}_{t_k}\right]}{\left(1+r\right)^{n-k}} = \frac{\mathbb{E}^{\mathbb{Q}}\left[\phi\left(S_{t_1},S_{t_2},...,S_{t_n}\right)|\mathcal{F}_{t_k}\right]}{\left(1+r\right)^{n-k}}.
$$

• So the initial amount of our replicating portfolio has to be

$$
x := \frac{\mathbb{E}^{\mathbb{Q}}\left[\phi\left(S_{t_1}, S_{t_2}, ..., S_{t_n}\right)\right]}{\left(1+r\right)^n}.
$$
 (2)

Binomial tree: generalization **Hedging derivative**

• Now, since $\frac{1}{(1+r)^{n-k}}\mathbb{E}^{\mathbb{Q}}\left[\phi\left(S_{t_1},S_{t_2},...,S_{t_n}\right)|\mathcal{F}_{t_k}\right]$ is a random variable which is \mathcal{F}_t –measurable it can be rewritten as a function $V_k(S_t, S_t, \ldots, S_t)$ where $V_k(\cdot)$ is deterministic. Let

$$
V_{k}\left(S_{t_{1}}, S_{t_{2}},..., S_{t_{k}}\right):=\frac{\mathbb{E}^{\mathbb{Q}}\left[\phi\left(S_{t_{1}}, S_{t_{2}},..., S_{t_{n}}\right) | \mathcal{F}_{t_{k}}\right]}{\left(1+r\right)^{n-k}}.
$$
 (3)

• In the previous chapter which introduces the model with one period, we have seen that the quantity of the risky asset Δ of the replicating portfolio looks like the variation of the value of the derivative induced by the variation of the underlying asset.

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 3

Hedging derivative

• In the proof of Theorem, we shall take $\Delta := (\Delta)_{k \in \{1, 2, ..., n\}}$ satisfying that for any $k \in \{1, 2, ..., n\}$

$$
\Delta_k := \frac{V_{k+1}(S_{t_1}, S_{t_2}, ..., S_{t_k}, uS_{t_k}) - V_{k+1}(S_{t_1}, S_{t_2}, ..., S_{t_k}, dS_{t_k})}{uS_{t_k} - dS_{t_k}}.
$$
 (4)

- Observe that for any $k \in \{1, 2, ..., n\}$, Δ_k is \mathcal{F}_t -measurable as a function of $(S_{t_1}, S_{t_2},..., S_{t_k})$. So, Δ is $\mathcal{F}-$ adapted and (x, Δ) is indeed a simple portfolio strategy.
- Now, let us establish the proof of Theorem 3.7 according to which the simple portfolio strategy (x, Δ) with Δ satisfying (4) replicates our derivative.

53/68

Proof.

We have to show that

$$
X_{t_n}^{x,\Delta} = \phi(S_{t_1}, S_{t_2}, ..., S_{t_n}) = V_n(S_{t_1}, ..., S_{t_n}).
$$

Let us proceed by induction. Let $P(k)$, $k \in \{1, 2, ..., n\}$ be the following statement:

 $X_t^{x,\Delta} = V_k(S_{t_1},...,S_{t_k})$

Clearly, $P(0)$ is true. Indeed, we have $X_{t_0}^{x,\Delta} = x$ and by (2)

$$
\mathfrak{c}:=\frac{\mathbb{E}^{\mathbb{Q}}\left[\phi\left(\mathcal{S}_{t_1},\mathcal{S}_{t_2},...,\mathcal{S}_{t_n}\right)\right]}{\left(1+r\right)^n}=\frac{\mathbb{E}^{\mathbb{Q}}\left[\phi\left(\mathcal{S}_{t_1},\mathcal{S}_{t_2},...,\mathcal{S}_{t_n}\right)|\mathcal{F}_{t_0}\right]}{\left(1+r\right)^{n-0}}\ .
$$

which by (3) correspond to $V_0(S_{t_0})$. (...) Jérôme MATHIS (LEDa) Arbitrage&Pricing

Binomial tree: generalization Hedging derivative

Proof.

 $(...)$

Assume $P(k)$ is true. Let us show that $P(k + 1)$ is true. $P(k)$ writes as

$$
\begin{array}{rcl} \mathsf{X}_{t_k}^{\mathsf{X},\Delta} & = & \mathsf{V}_k\left(\mathsf{S}_{t_1},...,\mathsf{S}_{t_k}\right) \\ \\ & = & \frac{\mathbb{E}^{\mathbb{Q}}\left[\phi\left(\mathsf{S}_{t_1},\mathsf{S}_{t_2},...,\mathsf{S}_{t_n}\right) \vert \mathcal{F}_{t_k}\right]}{\left(1+r\right)^{n-k}} \\ \\ & = & \frac{1}{\left(1+r\right)}\frac{\mathbb{E}^{\mathbb{Q}}\left[\phi\left(\mathsf{S}_{t_1},\mathsf{S}_{t_2},...,\mathsf{S}_{t_n}\right) \vert \mathcal{F}_{t_k}\right]}{\left(1+r\right)^{n-k-1}} \\ \\ & = & \frac{1}{\left(1+r\right)}\mathbb{E}^{\mathbb{Q}}\left[\left.\frac{\phi\left(\mathsf{S}_{t_1},\mathsf{S}_{t_2},...,\mathsf{S}_{t_n}\right)}{\left(1+r\right)^{n-(k+1)}}\right| \mathcal{F}_{t_k}\right]. \end{array}
$$
\nwhich is (LEDa)

\nArbitrage&Pricing

Binomial tree: generalization Hedging derivative

Proof.

Now using that for any martingale Z that is F -measurable we have for any k and s such that $k + s < n$

$$
\mathbb{E}\left[Z_{t_n}|\mathcal{F}_{t_k}\right] = \mathbb{E}\left[\mathbb{E}\left[Z_{t_n}|\mathcal{F}_{t_{k+s}}\right]|\mathcal{F}_{t_k}\right]
$$

we obtain

 $(...)$

Jérôme MATHIS (LEDa)

 \Box

57/68

 \Box

 $58/68$

Chapter 3

$$
X_{t_k}^{x,\Delta} = \frac{1}{(1+r)} \mathbb{E}^{\mathbb{Q}} \left[\mathbb{E}^{\mathbb{Q}} \left[\frac{\phi(S_{t_1}, S_{t_2}, ..., S_{t_n})}{(1+r)^{n-(k+1)}} \middle| \mathcal{F}_{t_{k+1}} \right] \middle| \mathcal{F}_{t_k} \right]
$$

=
$$
\frac{1}{(1+r)} \mathbb{E}^{\mathbb{Q}} \left[V_{k+1} (S_{t_1}, ..., S_{t_{k+1}}) \middle| \mathcal{F}_{t_k} \right].
$$

Arbitrage&Pricing

Binomial tree: generalization Hedging derivative

Jérôme MATHIS (LEDa)

Chapter 3

Binomial tree: generalization Hedging derivative

Proof.

which rewrites as

$$
X_{t_{k+1}}^{x,\Delta}=X_{t_k}^{x,\Delta}\left(1+r\right)+\Delta_k\left(S_{t_{k+1}}-\left(1+r\right)S_{t_k}\right)
$$

Using (5) and (4) we obtain

$$
X_{t_{k+1}}^{x,\Delta} = qV_{k+1}(S_{t_1},...,S_{t_k},uS_{t_k}) + (1-q)V_{k+1}(S_{t_1},...,S_{t_k},dS_{t_k}) + \frac{V_{k+1}(S_{t_1},S_{t_2},...,S_{t_k},uS_{t_k}) - V_{k+1}(S_{t_1},S_{t_2},...,S_{t_k},dS_{t_k})}{uS_{t_k} - dS_{t_k}} \text{ and in particular at } c
$$

\n
$$
\times (S_{t_{k+1}} - (1+r)S_{t_k}).
$$

\n
$$
C_0
$$

\n...

Binomial tree: generalization Hedging derivative

Proof.

 $\mathcal{L}_{_{+1}}$ with $\mathsf{Y}_{k+1} \mathsf{S}_{t_k}$ and q with $\frac{1+r-d}{u-d}$ we have

$$
X_{t_{k+1}}^{x,\Delta} = V_{k+1}(S_{t_1},...,S_{t_k},uS_{t_k}) \frac{Y_{k+1}-d}{u-d}
$$

+V_{k+1}(S_{t_1},...,S_{t_k},dS_{t_k}) \frac{u-Y_{k+1}}{u-d}.
Since Y_{k+1 can only takes the value u and d we obtain

$$
X_{t_{k+1}}^{x,\Delta} = V_{k+1}(S_{t_1},...,S_{t_k},Y_{k+1}S_{t_k}) = V_{k+1}(S_{t_1},...,S_{t_k},S_{t_{k+1}})
$$
which is $P(k + 1)$. (...)

which is $P(k + 1)$. (...)

which is $P(k + 1)$. (...)

Subtragels Pricing
Binomial tree: generalization
Hedging derivative
Proof.
Since every derivative is replicable, under NAO, a derivative of final
value

$$
C_T = \phi(S_{t_1},S_{t_2},...,S_{t_n})
$$
has a value at date t_k given by

Since Y_{k+1} can only takes the value u and d we obtain

$$
X_{t_{k+1}}^{x,\Delta} = V_{k+1}(S_{t_1},...,S_{t_k},Y_{k+1}S_{t_k}) = V_{k+1}(S_{t_1},...,S_{t_k},S_{t_{k+1}})
$$

which is $P(k + 1)$. (...)

$$
C_7=\phi\left(S_{t_1},S_{t_2},...,S_{t_n}\right)
$$

$$
C_{t_k}=\frac{1}{\left(1+r\right)^{n-k}}\mathbb{E}^{\mathbb{Q}}\left[\phi\left(\mathcal{S}_{t_1},\mathcal{S}_{t_2},...,\mathcal{S}_{t_n}\right)|\mathcal{F}_{t_k}\right]
$$

and in particular at date 0

$$
C_0 = \frac{1}{(1+r)^n} \mathbb{E}^{\mathbb{Q}} \left[\phi \left(S_{t_1}, S_{t_2}, ..., S_{t_n} \right) \right].
$$

Jérôme MATHIS (LEDa

Arbitrage&Pricing

 \Box

- It means that the derivative price at any date can be obtained by backward induction.
	- \triangleright we can treat each binomial step separately and work back from the end of the life of the option to the beginning to obtain the current value of the option.
- The following result extends Proposition 2.6 of Chapter 2 to our setup.

Proposition (3.8)

If every asset is replicable with a simple portfolio strategy (complete market) then the equivalent martingale measure is unique.

Proof. The proof is the one of Proposition 2.6. Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 3

Chapter 3: Binomial tree with n period **Outline**

Introduction

Binomial Trees: Two-Step

Binomial tree: generalization

Conclusion

- -
	-
	-
- **The binomial model with** *n* periods produces similar results to the model with one period:

 the derivative price does not depend the probabilities of up, p, and

down, (1ρ) , movements in the stock price at each no

Conclusion

- We can assume the world is risk-neutral when valuing an option.
	- No-arbitrage arguments and risk-neutral valuation are equivalent and lead to the same option prices.
- \bullet The delta of a stock option, Δ , considers the effect of a small change in the underlying stock price on the change in the option price.
	- It is the ratio of the change in the option price to the change in the stock price.
	- For a riskless position, an investor should buy \triangle shares for each option sold.
	- An inspection of a typical binomial tree shows that delta changes during the life of an option.
	- This means that to hedge a particular option position, we must change our holding in the underlying stock periodically.

 \Box