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Introduction

Chapter 3: Binomial tree with n period
Outline

o o . . . .
o Introduction The one-period model is often too simple for practical purpose

» An individual investor has approximately 50 years of adult life when

) . he is making choices over savings, investment and consumption.
e Binomial Trees: Two-Step

* If important investment decisions are taken every five years, we need at
least a 10-period model.
e Binomial tree: generalization » Professional investors trade even more frequently.
. * A trader on a stock exchange may adjust his portfolio several times a
e Conclusion day resulting in more than 500 investment decisions a month.
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Introduction

@ The aim of this chapter is to introduce the techniques to asset
pricing in a dynamic framework.

» We use a simple set-up with the European call option as a focus
asset in a discrete-time model:

* to illustrate the backward recursive pricing procedure; and
* to recover the option price as an unconditional expectation under
risk-neutral probabilities.
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e Binomial Trees: Two-Step
@ Generalization
@ A Put Option Example
@ Delta
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Binomial Trees: Two-Step

@ Consider Example D of Chapter 2:

Example
A 3-month call option on the stock has a strike price of 21.

Stock Price = $22
Option Price = $1
Stock price = $20
Option Price=?
Stock Price = $18
Option Price = $0
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Binomial Trees: Two-Step

@ Applying the formula

1 (R-d., u-R 4
CO_R(u—dC1+u—dC1>

to the 3 months risk-free interest rate of 3.05%, we found the initial
price of the option:

Co

1 (1.0305 -09

T 10305\ 1.1-09 > ~ 0633
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Binomial Trees: Two-Step Binomial Trees: Two-Step
@ We also obtained the same initial price of the option using a o
risk-neutral valuation. 22
@ Indeed, by denoting q the probability that gives a return on the stock " <2.ozsz s

equal to the risk-free rate: 1.2826
So(1+r)=S{q+S{(1-q). .
@ The value of the option is

Co — Ciq+CJ(1—q) @ When the stock price is 22, the option price is
° T+r 0.6525 x 3.2 + 03475 x 0 _, (o
@ So that in Example D(®) we obtained 1.0305 -
20 (1.0305) = 22q + 18(1 — q). @ When the stock price is 18,_the optiop price is zero, because it leads
to two nodes where the option price is zero.
so that g = 0.6525. And @ The initial option price is
~1x0.6525 +0(1 - 0.6525) 0.6525 x 2.0262 + 0.3475 x 0
Co = 10305 ~ 0.6332. 10305 =1.283
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Binomial Trees: Two-Step

@ Let us extend this example to a two-step binomial tree.

Binomial Trees: Two-Step

Generalization

@ Suppose that the risk-free interest rate is r, with continuous

@ Assume the stock price starts at $20 and in each of two time steps compounding, and the length of the time step is At years.
may go up by 10% or down by 10%. o We have
» Each time step is 3 months long and 3 months risk-free interest rate Co =[qCY¥ + (1 — q)C?]e"A’
of 3.05%.
» We consider a 6-month option with a strike price of $21. _ e'Al— d
u—d
24.2 1 =1[aC3" + (1 - q)C5%e ™
2 and
2 19.8 C{ =[qC8" + (1 - q)C5]e "™
@ So, when C§¥ = C4“ we obtain
18
16.2 Co = [qZCZuu +2C](1 . q)ng + (1 . q)Zng]e—ZrAt
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Binomial Trees: Two-Step Binomial Trees: Two-Step

A Put Option Example A Put Option Example

Consider a 2-year European put with a strike price of $52 on a stock
whose current price is $50.

We suppose that there are two time steps of 1 year, and in each time
step the stock price either moves up by 20% or moves down by 20%.

We also suppose that the risk-free interest rate is 5%.

What is the initial price of the option?
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Binomial Trees: Two-Step Binomial Trees: Two-Step
A Put Option Example A Put Option Example
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Binomial Trees: Two-Step
Delta

Definition

Delta (A) is the ratio of the change in the price of a stock option to the
change in the price of the underlying stock.

@ It is the number of units of the stock we should hold for each option
shorted in order to create a riskless portfolio.
» Itis the same as the A introduced earlier in this and previous
chapters.
@ The construction of a riskless portfolio is sometimes referred to as
delta hedging.
@ The delta of a call option is positive, whereas the delta of a put
option is negative.
@ The value of A varies from node to node.
» E.g., when the stock price changes from $18 to $22, and the option
price changes from $0 to $1, we have A = ;=% = 0.25.
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Chapter 3: Binomial tree with n period
Outline

e Binomial tree: generalization
@ Basic notions on Probability
@ Setup
@ Simple portfolio strategies
@ Arbitrage and risk-neutral probability
@ Hedging derivative
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Binomial tree: generalization
Basic notions on Probability

Definition

A filtration is a sequence of o—algebra (F), <, such that each
o—algebra in the sequence contains all the sets contained by the
previous o—algebra. Formally, 7 C Fxq, Yk < n.

@ A filtration models the evolution of information through time. So for

example, if it is known by time k whether or not an event, E, has
occurred, then we have E € F.

Definition

Let 7 := (Fk)1<x<n e afiltration. The stochastic process (Xx)1<k<n is
F—adapted, if X, is Fx—measurable for each k < n.

@ The idea is that the value of X, is known at time k when the
information represented by Fj is known.
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Binomial tree: generalization
Basic notions on Probability

Proposition (3.1)

If the stochastic process (Xx)1<k<n is F—adapted, then X; is
Fx—measurable forany i < k.

Straightforward.

If the stochastic process (Xx)1<k<n is F—adapted then X is
Fi—measurable.

Since F :=(Fk)1<x<p is @ filtration then F; C Fy, Vi < k, with k < n.
So, X; is Fx—measurable. O

V.
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Binomial tree: generalization

Binomial tree: generalization
Basic notions on Probability

Basic notions on Probability

® I1M=(Mi)rcxzp i 2 #~martingale unr  ter
The natural fFItraFion of the sfcochastic procgss (Xk)1<k<n is given by EP[MKU_—’_] — M; ,foranyi < k
the smallest filtration F for which (Xx)1<x<n is F—adapted.

We denote it by FX := (FX)1<k<n, With F the c—algebra generated and in particular, we have

Dt EP[My] = Mo.

l.e., fli( = U(X1,X2, ...,Xk).
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Binomial tree: generalization
Basic notions on Probability

Binomial tree: generalization

Set-up

Definition (new)

A stochastic process M :=(My)1<x<n is a F—martingale under P if M @ We extend the model of the previous chapter to n periods.

is 7 —adapted, . @ We consider an interval of time [0, T] divided into n periods:
E"[|[Mk[] < +oo, forany k <n O=fo<t; <..<t,=T.

and

@ There are two assets:
B [My11|F] = My

» A non-risky asset S?:
@ If the previous equality is replaced with < the process tends to go

down and is called a supermartingale. If the previous equality is T+ =1+ — .. —1+r)
replaced with > the process tends to go up and is called a
submartingale.
. . . . » Arrisky asset S; that evolves according to the following Table
@ So, a supermartingale (resp. submartingale) is a loosing (resp.

winning) game.
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Binomial tree: generalization

Set-up
i < vy
T 0 a™ds,

d™tus

0

@ The order of occurrence of u and d’s does not count. So, the tree
recombines (e.g., du?Sy = udu Sy = u?dSy). At time t the asset
may then only take t + 1 values. (If the order would have count we
would have obtained 2! values.)
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Binomial tree: generalization
Set-up

@ Atdate t Nature selects w; € {w¥,w?}. So
Q= {(w1, w2, ...,wn) Vi € {0,1,...,n} we have w; = w{ or w; = w,-d}.
We assume that the probability of occurrence of u is time-invariant:
P(wj=wi)=p

and
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Binomial tree: generalization
Set-up

@ So

P (LU1,LL)2, " U-)n) _ p#{i€{0,1,..,,n}|wi:w;’} > (1 _ p)#{i€{0,1,...,n}|wi:wfj} )

@ The value of the asset at time t;, can be written as

i
Sy =So ] Y«
k=0

with (Yi),_o..n : Q71— {u,d}""" being a collection of random
variables i.i.d., with Y} is realized at time k, and takes the value u
with probability p and d with probability (1 — p).
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Binomial tree: generalization
Set-up

@ So we have

and
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Binomial tree: generalization

Set-up

@ The information available at time {; is given by the filtration
(Fbe)1<k<i» With

ft. = O’((,U1,0J2, ...,w,-) = 0‘(Y1, Yz, ceey Y,) = O'(St1,St2, vony St,-) .

1

Definition (Mathematics)

In our market, a derivative is a random variable that is
Fr—measurable.

@ So, a derivative takes the form of a function ¢ (S¢,, St,, ..., St,)-
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e Binomial tree: generalization
@ Basic notions on Probability
@ Setup
@ Simple portfolio strategies
@ Arbitrage and risk-neutral probability
@ Hedging derivative
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Binomial tree: generalization
Simple portfolio strategies

Definition

A simple portfolio strategy consists in an initial amount of cash x
and a stochastic process A := (Ag)o<k<n—1 Which is F—adapted.

We denote this strategy by the pair (x, A) and its value at date {; by

X, A
X8,

@ A simple portfolio strategy consists in using a part of an initial
amount of cash x to buy (at the initial date) the risky asset in
quantity Ag, and to invest the other part of x in a non-risky asset.

» Then at date f; we invest into the risky asset in quantity A;.

» The process is F—adapted because the amount of investment at
date f; is determined using the information available at date ¢;.

» This simple portfolio strategy is self-financing.
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Binomial tree: generalization
Simple portfolio strategies

@ Between period {; and t; 1, the portfolio takes the form of A; units of

. XP NSy . .
risky asset and ———— units of non-risky asset. So, the value of

(1+r)
the portfolio at time ¢; is given by
X8 — NS, .
XEA = NSy + TPy
i (1 + r)l

@ Since the strategy is self-financing, no money is withdrawn nor
inserted during the time interval [f;, 1), so we have
Xt),-(7A — A,’Sti

i+1
(1+r) A+

X8 = Aistm +

tii1
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Binomial tree: generalization Binomial tree: generalization

Simple portfolio strategies Simple portfolio strategies
@ From
° 7 i v - g g
It_e_tg c1jenotnes the current value of the variable Z at date Xt),-(’A _ X;,A I (AiSt,- _ AiSt,-)
» So, the current value of the portfolio X at date ¢; writes as = Aiét,- + <>~(t),.(7A - Aiét,-)
XX,A . . . -
b 2 we obtain the self-financing condition
b ) R R ) )
XA X% =A-(s. —s.). 1
» and the current value of the risky asset at date t; writes as fiss f APl b M
g . S, @ This condition can be rewritten as
Ty

i
)N(t)’(;? =X+ ZAK (Stk+1 — Stk) .
k=0
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Binomial tree: generalization Binomial tree: generalization
Simple portfolio strategies Arbitrage and risk-neutral probability

® Sowe have
y XA A simple arbitrage is a simple portfolio strategy that gives to a
Xt’i‘ﬁ = % portfolio no value at time t = 0 and a value at time T = t, which is
(1+7) N strictly positive with positive probability and is never negative. Formally,
XOR—n;S;, ; 1A : _ ; n
Ay, + t,-(1+r)i (1) it is a pair (x = 0, A) with A € R” such that
- (14 )" X22 > 0and P(X22 > 0) > 0.
~ Xt),-(A — AiSt,-
= ASp =
~ . . We say that there is no simple arbitrage opportunity (NAO’) if
= DS+ (X0 -8
VAR {X32 >0 = XP2=0P-as}
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Binomial tree: generalization
Arbitrage and risk-neutral probability

Proposition (3.2)
IfNAO’thend < 1+r < u.

We proceed by contradiction. Assume NAO’and d > 1 +r.

Consider the following simple arbitrage strategy:
- buy one unit of the risky asset; and

- sell the equivalent amount of the non risky asset in period = 0;

- then resell the unit of the risky asset at time t; and

- invest it into the non-risky asset until period T

-(ie, x=0,A¢p=1,and A; =0foranyi > 1). (...) O
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Binomial tree: generalization
Arbitrage and risk-neutral probability

Such a strategy is deterministic so it is #—adapted. At date T = t, the
portfolio value is given by:
n—1
20.A ~ ~
XT = 0—|—ZAk <Stk+1 = Stk>
k=0
= St — S
() O
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Binomial tree: generalization
Arbitrage and risk-neutral probability

Since S, can only takes two values (either uSy or dSy), the portfolio

value at time T is either

(1+r)"so<(1ir)—1>>o

or

(1+r)" S, (ﬁ-ﬂ >0

which contradicts NAQO’, since both values occur with strictly positive
probabilities (resp. p and (1 — p)). (...) O
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Binomial tree: generalization
Arbitrage and risk-neutral probability

Similarly, we obtain a contradiction by assuming u < 1 + r and by
considering the simple arbitrage strategy that consists in:

- selling one unit of the risky asset; and

- buying the equivalent amount of the non risky asset in period t = 0;

-le,x=0,Ag=—-1,and A; =0 forany i > 1. O

&
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Binomial tree: generalization

Arbitrage and risk-neutral probability

@ Consider the following probability on :

Q ((,U1,0J2, ...,wn) _ q#{ie{1 ..... n}wi=wi'} « (1 . q)#{ie{1 ..... n}|w,-:w7}
with
~(1+r)—d
u—d

@ We then have
Q (Sti = usfi—1) =Q(Yi=u)=gq

and
Q(S;=dS; ,)=Q(Yi=d)=1—q.

@ Let us show that Q is a risk-neutral probability measure.
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Binomial tree: generalization
Arbitrage and risk-neutral probability

Binomial tree: generalization

Arbitrage and risk-neutral probability

Moreover, we have

EQ[|S;|] = ———= < 400, foranyi <n

( i
and (...) O

B[Sy ]
1+r
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Binomial tree: generalization
Arbitrage and risk-neutral probability

@ By definition (see chap. 2), a risk-neutral probability measure or
equivalent martingale measure (EMM) is a probability measure Q
which is equivalent to P and for which any simple strategy
expressed in current value is a martingale.

Proposition (3.3)

S = <Sti)ie{1,2 77777 7 is a F—martingale under Q.

Clearly, §t, = % is F,—measurable for each i < n, so Sis
F—adapted.(...) O
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quS;, +(1—q)dS;,

EQ[gti+1|ft/] = 1+r
1 (1+r)—d (1+r)—d\ .=
= 1+r( =4 uSt,.+(1 4 dSy,
1 1+r)—d u—1+r) \ a
B 1+r< u—d YT Tu—d d)Ss

1 (A+Nu—-d)\ a =
:1+r< u—d )S"‘:S""

i
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Binomial tree: generalization
Arbitrage and risk-neutral probability

Arbitrage and risk-neutral probability

@ The following result states that if the current values of the standard
assets are martingale under a given probability then it is so of the
current value of any simple portfolio strategy.

Proposition (3.4)

The current value X*2 of any simple portfolio strategy (x,A) is a
F—martingale under Q.

Clearly, X*A s F —adapted. Moreover, we have

EQ[IX;4

] < 400, foranyi <n.

(..) O
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Binomial tree: generalization
Arbitrage and risk-neutral probability

Proof.
Now it suffices to show that

BN — X 0IF] = 0.
From (1) we have
BURS — 08N =B, (8, — 8 ) 17

SO
EQ[)N(;I:’? _)?g,A|‘7;}i] = AiEQ[StH.1 - Sfi|‘7:fi] =0

where the last equality comes from the previous Proposition. O
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If d < R < u then there is an equivalent martingale measure Q. I

According to the previous result we know that Q is a probability
measure for which any simple strategy expressed in current value is a
martingale. Moreover, Q is equivalent to IP since d < R < u implies
that g € (0,1) and that Q (w,ws, ...,wn) > 0 for every

(wq,w2, ..., wn) € Q. O

The value at date t; of any simple portfolio strategy writes as
A
ti (1 + r)n—l
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Binomial tree: generalization
Arbitrage and risk-neutral probability

@ Hence, if we are able to hedge a derivative, NAO implies that the
value of the hedging portfolio at date ¢; is given by the expected
current value of its final value under the risk-neutral probability.

@ Before exploiting this idea, let us state the following result.

Proposition (3.6)
If there is an equivalent martingale measure Q then NAO’ holds.
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Binomial tree: generalization

Arbitrage and risk-neutral probability

As in the previous chapter, let A € R” such that X2 > 0.

Since Q is an equivalent martingale measure, we have
B [X;=*4| =x =0.

Which means that X2* is a random variable that is positive and whose
expected value is zero.

This variable is then equal to zero Q — a.s.

Finally, since Q is equivalent to P we obtain PP (X?’A > 0) =0. O
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Binomial tree: generalization

Arbitrage and risk-neutral probability

@ Hence we obtain

NAO < d<R<u
< there is an equivalent martingale measure.

@ Saying that
“the current values of every standard asset is martingale under Q”

is then equivalent to say that

‘the current value of every simple portfolio strategy is martingale
under Q.
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Chapter 3: Binomial tree with n period
Ouitline

Arbitrage and risk-neutral probability

@ From Proposition 3.2
NAO' — d <R <u
@ From Theorem 3.5
d < R < u = there is an equivalent martingale measure
@ From Proposition 3.6 we have

there is an equivalent martingale measure =—> NAO’
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e Binomial tree: generalization
@ Basic notions on Probability
@ Setup
@ Simple portfolio strategies
@ Arbitrage and risk-neutral probability
@ Hedging derivative
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Hedging derivative Hedging derivative

In our market, every derivative is replicable by using a simple portfolio

@ Now, since ———EQ[¢(Sy, St,, ..., St,) | 7] is a random variable
strategy (x, A).

(1+r)"K
which is F;, —measurable it can be rewritten as a function

Vi (St,, Sty ..., St,) where Vi (-) is deterministic. Let

What is the form of (x, A)? E2 6 (S, Sty -+ Sto) | F4,]

Vic (St Sty - St ) := (A5 - 3)
@ We are looking at for a simple portfolio strategy (x, A) replicating a
derivative of value C at date T. Since Ct is F;,—adapted, the @ In the previous chapter which introduces the model with one period,
value of the derivative takes the form of a function ¢ (S, St,, ..., St,) we have seen that the quantity of the risky asset A of the replicating
so (x, A) has to satisfy portfolio looks like the variation of the value of the derivative

A induced by the variation of the underlying asset.
Xt:’ = 425 (St1 , Stz, ey Stn) .

Jérdbme MATHIS (LEDa) Arbitrage&Pricing Chapter 3 53/68 Jérome MATHIS (LEDa) Arbitrage&Pricing Chapter 3 55/68

Hedging derivative

@ In the proof of Theorem, we shall take A := (A), (4, satisfying
that forany k € {1,2,...,n}

Binomial tree: generalization
Hedging derivative

@ According to Proposition 3.4, the current value of every simple
portfolio strategy is martingale under the EMM @, so the value Xt’;’A

of the replicating portfolio at date t; satisfies A Virr (Stys Sty s St uSt) — Vier1 (Sty Sty -ons Sty , dSt,) @)
EQ | X4\ F, ' uSy —dSy, ’
XX7A _ [ tn tk:| _ EQ [¢ (Stwstza"-ystn)’ftk] )
be (1+r)"k N (14r)"* : @ Observe that for any k € {1,2,...,n}, A is F;, —measurable as a
function of (Sy,, St,, ..., St,). So, A is F—adapted and (x, A) is
@ So the initial amount of our replicating portfolio has to be indeed a simple portfolio strategy.

0 @ Now, let us establish the proof of Theorem 3.7 according to which

X = E*[¢(St, Sty -, St,)] ) the simple portfolio strategy (x, A) with A satisfying (4) replicates

(1+r)" ' our derivative.
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Hedging derivative

Binomial tree: generalization

Hedging derivative

We have to show that Now using that for any martingale Z that is #—measurable we have for
any k and s such thatk +s <n

X2 = (St Sty s Sty) = Vi (Stys s Sty -

E |Z; |Fi | =B |E |Z;, | F Fi

Let us proceed by induction. Let P(k), k € {1,2, ..., n} be the following 12,174 (B (20| Fbe,] 172

statement: we obtain
X;;’A = Vk (St1 yeey Stk)

A 1 & (St,, Styy ..y St,)
Clearly, P(0) is true. Indeed, we have Xt’g’A = x and by (2) Xti = WEQ & (1 ;_r),z;_(kﬂ) Fteer || Fti
1
_ BO[6(Sh, St Su)l _ BUI0 (S, Sty S) 1] = B [V (S St | Fil]
(1+n)" (1+r)"° (1+7)
which by (3) correspond to Vj (Sy,). (...) O L) D,

Binomial tree: generalization
Hedging derivative

Binomial tree: generalization
Hedging derivative

Proof.

Assume P(k) is true. Let us show that P(k + 1) is true.
So

P(k) writes as ,
Xf);?A = Vi (St1"“7Stk) EQ Vit (Stw---,Stk,UStk)‘l{YtkH:u}

EQ [¢(St1,St2,...,Stn)|ftk] +Vk+1 (St17"'7stk7dstk)1{yt :d} tk

- n—k XA k11

(1+r) b (1+r)

_ 1 E® [¢(St178127---k, S;l‘n)|ffk] Q(Ytk+1 = U) Vi1 (St1,...,Stk,UStk)
(1 +r) (1 —I—r)”_ a _ +@ (Ytk+1 :d) Vk+1 (8,1,...,Stk,dStk)

_ 1 po|#(Su:Sh - Sh) . (1+7)
(147r) 1+ r)"—(k+1) ks O

&
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Binomial tree: generalization

Hedging derivative

That is

_ [qVk+1 (Sf1 » 2999 kaa UStk) + (1 — q) Vk+1 (St17"'7 Sl‘ka dStk)]

X, A
X (1+7r)

®)

Now, from (1) we have

tk+1

X8 = )N(ti’A + Ay (Stk+1 - él‘k)

SO

X, A X,A
th+1 . th + A Stk+1 Stk
(1 :

A+ 1+ )k
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Binomial tree: generalization
Hedging derivative

Proof.
By replacing Sy, with Yi1S;, and g with =2 we have

Yk+1—d
—d
U— Y1

X2 = Vi1 (St Sy, USy)

tyi1
+Vk+1 (St1 5 eee Stk, d Stk)
Since Y1 can only takes the value u and d we obtain

X;2 = Vi1 (Stys s St Yer1St) = Vierr (Strs s St Sty

)
k+1

which is P(k + 1). (...) O
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Binomial tree: generalization
Hedging derivative

which rewrites as

X8 = X2 (14 1) + A (St — (141) Sy,

tkt1

Using (5) and (4) we obtain

X8 = qVipr (St St uSy) + (1= ) Viey (St - Sty 0 Sty
Vi1 (St Sty s St US4) = Vi1 (St Sty -+ St IS3,)
UStk — dStk
X (St — (14 1)St,) -
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Binomial tree: generalization
Hedging derivative

Proof.

Since every derivative is replicable, under NAO, a derivative of final
value

CT = ¢ (St1 ) St27 ooog) Stn)
has a value at date f; given by

1
kEQ [¢ (SH ) Stzv so5g Stn) |~7:tk]

Cp=——
AT

and in particular at date 0

1
Co = G 10 (S-St Sul.

O

o
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Binomial tree: generalization

Hedging derivative

@ It means that the derivative price at any date can be obtained by
backward induction.
» we can treat each binomial step separately and work back from the

end of the life of the option to the beginning to obtain the current
value of the option.

@ The following result extends Proposition 2.6 of Chapter 2 to our
setup.

Proposition (3.8)
If every asset is replicable with a simple portfolio strategy (complete
market) then the equivalent martingale measure is unique.

The proof is the one of Proposition 2.6. O ,
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Chapter 3: Binomial tree with n period
Outline

o Conclusion
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Conclusion

@ The binomial model with n periods produces similar results to the
model with one period:

» the derivative price does not depend the probabilities of up, p, and
down, (1 — p), movements in the stock price at each node of the tree.

» the derivative price is the expected current value, expressed with the
equivalent martingale measure Q, of its future value.

» the quantity A of the risky asset in the replicative portfolio measures
how the derivative price moves with the underlying asset price.

@ When stock price movements are governed by a multistep binomial
tree, we can use backward induction to deduce the initial option
price from the final option price.
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Conclusion

@ We can assume the world is risk-neutral when valuing an option.

» No-arbitrage arguments and risk-neutral valuation are equivalent and
lead to the same option prices.

@ The delta of a stock option, A, considers the effect of a small
change in the underlying stock price on the change in the option
price.

» ltis the ratio of the change in the option price to the change in the
stock price.

» For a riskless position, an investor should buy A shares for each
option sold.

» An inspection of a typical binomial tree shows that delta changes
during the life of an option.

» This means that to hedge a particular option position, we must
change our holding in the underlying stock periodically.
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