Arbitrage&Pricing

Paris Dauphine University - Master I.E.F. (272) 2023/24

Jérôme MATHIS

www.jeromemathis.fr/a-p

LEDa

Chapter 2

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

Arbitrage&Pricing

Chapter 2

Chapter 2: Binomial tree with one period **Outline**

- Introduction

- Simple portfolio strategies
- - Evaluating and hedging derivative

Introduction Motivation

- A useful and very popular technique for pricing an option involves constructing a binomial tree.
 - ▶ This is a diagram representing different possible paths that might be followed by the stock price over the life of an option.
 - ► The underlying assumption is that the stock price follows a *random* walk.

Jérôme MATHIS (LEDa)

Chapter 2: Binomial tree with one period Outline

- Basic notions on Probability (Part 1)

- - Simple portfolio strategies
- - Evaluating and hedging derivative

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 Jérôme MATHIS (LEDa) Arbitrage&Pricing

Basic notions on Probability (Part 1)

- A useful and very popular technique for pricing an option involves constructing a binomial tree.
- Let $(\Omega, \mathcal{F}, \mathbb{P})$ denotes a *probability space*. That is, a triple of:
 - lacktriangle Ω a sample space which is the universe of possible outcomes;
 - \mathcal{F} a set of events, where an event is a subset of Ω ;
 - ▶ \mathbb{P} a probability function from \mathcal{F} to [0, 1], which measures the likeliness that an event will occur.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

hapter 2

5 / 63

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

7 / 63

Basic notions on Probability (Part 1)

Example (Flipping a coin)

$$\Omega = \{H, T\}, \mathcal{F} = \{\emptyset, \{H\}, \{T\}, \Omega\},\$$

$$\begin{array}{cc} : & \mathcal{F} \longmapsto [0,1] \\ & A \longmapsto \mathbb{P}[A] = \left\{ \begin{array}{l} 1 \text{ if } A = \Omega \\ \frac{1}{2} \text{ if } A = \{H\} \text{ or } \{T\} \\ 0 \text{ if } A = \varnothing \end{array} \right. .$$

Basic notions on Probability (Part 1)

- Observe that for the probability $\mathbb P$ to be well-defined, the set of events $\mathcal F$ has to satisfy some properties:
 - \triangleright \mathcal{F} is non-empty;
 - ▶ \mathcal{F} is closed under complementation: If A is in \mathcal{F} , then so is its complement, $\Omega \setminus A$; and
 - ▶ \mathcal{F} is closed under countable unions: If A_1 , A_2 , A_3 , ... are in \mathcal{F} , then so is $A = A_1 \cup A_2 \cup A_3 \cup ...$.
- We say that such \mathcal{F} is a σ -algebra (or σ -field).
 - ▶ In general, we will take $\mathcal F$ as the smallest $\sigma-$ algebra generated by the experiment.

Basic notions on Probability (Part 1)

Example (A)

We consider the experiment that consists in rolling a dice and then checking whether the number 6 is the outcome.

So, $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{F}_A = \{\emptyset, \{6\}, \{1, 2, 3, 4, 5\}, \Omega\}.$

Example (B)

We consider the experiment that consists in rolling a dice and then checking whether the outcome is even.

So, $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{F}_B = \{\emptyset, \{2, 4, 6\}, \{1, 3, 5\}, \Omega\}.$

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 6 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 8 / 6

Basic notions on Probability (Part 1)

Example (C)

We consider the experiment that consists in rolling a dice and then checking the outcome.

So, $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{F}_C = 2^{\Omega}$, where 2^{Ω} denotes the *power set* of the sample space.

I.e., \mathcal{F}_C has $2^6=64$ elements. E.g., one of this element is $\{2,5\}$, which consists in checking whether the outcome is 2 or 5.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

hapter 2

9 / 63

Chapter 2: Binomial tree with one period Outline

- 1 Introduction
- Basic notions on Probability (Part 1)
- 3 Binomial tree (Part 1)
- Basic notions on Probability (Part 2)
- Binomial tree (Part 2)Simple portfolio strategies
- Basic notions on Probability (Part 3
- Binomial tree (Part 3)
 - Evaluating and hedging derivative

Binomial tree (Part 1)

- We consider a market with only two periods: t = 0 and t = 1.
- There are two assets.
 - A riskless asset who values 1 at date t = 0 and R = (1 + r) at date t = 1. r denotes the risk-free interest rate that we could obtain with a zero coupon.
 - ▶ A risky asset S who values S_0 at date t = 0 and can take two different values at date t = 1: $S_1 \in \{S_1^u, S_1^d\}$ with $S_1^u = uS_0$, $S_1^d = dS_0$, and d < u.

Example (D)

A stock price is currently \$20 and in 3 months it will be either \$22 or \$18

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

Binomial tree (Part 1)

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ denotes the probability space corresponding to this market situation. We have:

 - $\mathcal{F}_0 = \{\varnothing, \Omega\}; \mathcal{F}_1 = \{\varnothing, \{\omega_u\}, \{\omega_d\}, \Omega\}; \text{ and }$
 - ▶ \mathbb{P} such that $\mathbb{P}(\omega_u) = p$ and $\mathbb{P}(\omega_d) = 1 p$, with $p \in (0, 1)$.
- Observe that $\mathcal{F}_0 \subset \mathcal{F}_1$: we acquire information through time.

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 10 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 12 / 63

Chapter 2: Binomial tree with one period Outline

1 Introduction

2 Basic notions on Probability (Part 1)

3 Binomial tree (Part 1)

Basic notions on Probability (Part 2)

Binomial tree (Part 2)Simple portfolio strategies

6 Basic notions on Probability (Part 3)

Binomial tree (Part 3)

Evaluating and hedging derivative

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

13/6

Basic notions on Probability (Part 2)

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a *probability space*. A (real-valued) **random variable** is a (real) function $X : \Omega \longmapsto \mathbb{R}$ such that $\{\omega \in \Omega | X(\omega) \leq x\} \in \mathcal{F}$ for every $x \in \mathbb{R}$.

• Said differently, a random variable is a function that assigns a numerical value to each state of the world, $X : \Omega \longmapsto \mathbb{R}$, such that the values taken by X are known to someone who has access to the information \mathcal{F} .

Basic notions on Probability (Part 2)

Example (A')

The window will be opened if and only if the maximal number of the dice is realized.

By associating the number 1 to the action of opening the window and zero otherwise, we have:

$$X_A = \begin{cases} 1 \text{ if } \omega = \{6\} \\ 0 \text{ otherwise.} \end{cases}$$

Observe that we can use \mathcal{F}_A (or \mathcal{F}_C) but not \mathcal{F}_B .

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

15/6

Basic notions on Probability (Part 2)

Example (B')

You earn 100€ if the realization of the dice is even and you lose 50€ otherwise.

$$X_B = \begin{cases} +100 \text{ if } \omega \in \{2, 4, 6\} \\ -50 \text{ otherwise.} \end{cases}$$

Observe that we can use \mathcal{F}_B (or \mathcal{F}_C) but not \mathcal{F}_A .

Example (C')

You earn 15€ if the realization of the dice is 5 and zero otherwise.

$$X_{\rm C} = \left\{ egin{array}{l} +15 \ {
m if} \ \omega = \{5\} \ 0 \ {
m otherwise}. \end{array}
ight.$$

Observe that we can use \mathcal{F}_C but neither \mathcal{F}_A nor \mathcal{F}_B .

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 14 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 16 / 6

Basic notions on Probability (Part 2)

Definition

Let \mathcal{F} denotes a σ -algebra associated with Ω .

A (real) function $X : \Omega \longmapsto \mathbb{R}$ is \mathcal{F} -measurable if, for any two numbers $a,b \in \mathbb{R}$, all the states of the world $\omega \in \Omega$ for which X takes value between a and b forms a set that is an event (an element of \mathcal{F}).

Formally, $\forall a, b \in \mathbb{R}$, a < b, we have $\{\omega \in \Omega | a < X(\omega) < b\} \in \mathcal{F}$.

- ullet So, a random variable is $\mathcal{F}-$ measurable if and only if it is known with the information given by \mathcal{F} .
 - ▶ I.e., for any two numbers, we are able to answer the question on whether the realization of the random variable belongs to the interval formed by these two numbers.
 - ▶ Roughly speaking, we are able to say what actually happened.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Basic notions on Probability (Part 2)

Example (A")

 X_A is \mathcal{F}_A -measurable and \mathcal{F}_C -measurable but is not \mathcal{F}_{R} -measurable.

Example (B")

 X_B is \mathcal{F}_B —measurable and \mathcal{F}_C —measurable but is not \mathcal{F}_{A} -measurable.

Example (C")

 X_C is \mathcal{F}_C —measurable but neither \mathcal{F}_A —measurable nor \mathcal{F}_{R} -measurable.

Basic notions on Probability (Part 2)

- A more general definition is that a function $X : G \longrightarrow H$ is **measurable** if the preimage under X of every element in the σ -algebra associated with *H* is in the σ -algebra associated with *G*.
 - ▶ Formally, if \mathcal{G} (resp. \mathcal{H}) is the σ -algebra associated to \mathcal{G} (resp. \mathcal{H}), then $X^{-1}(y) := \{g \in G | X(g) = y\} \in \mathcal{G}, \forall y \in \mathcal{H}.$
 - ▶ The idea is that a measurable function pulls back measurable sets.
- The notion of measurability depends on the σ -algebras that are used.
 - ▶ In our definition, as the σ -algebra associated with \mathbb{R} we took the Borel σ -algebra on the reals, i.e., the smallest σ -algebra on \mathbb{R} which contains all the intervals.

Chapter 2: Binomial tree with one period Outline

- Binomial tree (Part 2)
 - Simple portfolio strategies
- - Evaluating and hedging derivative

Jérôme MATHIS (LEDa) Jérôme MATHIS (LEDa) Arbitrage&Pricing Arbitrage&Pricing

- The risky asset S (who values S_0 at date t=0 and can take two different values at date t=1: $S_1 \in \{S_1^u, S_1^d\}$) is a random variable that is \mathcal{F}_1 —measurable, but is not \mathcal{F}_0 —measurable.
- That is, the information known at date 0 is not sufficient to say what is the realization of *S*.
 - ▶ Instead, we have to wait until date 1.
- Observe that \mathcal{F}_1 is the smallest σ -algebra that makes S measurable.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

21 / 63

Binomial tree (Part 2)

Definition (Finance)

A **derivative** is a contract that derives its value from the performance of an underlying entity (e.g., asset, index, interest rate, ...)

Definition (Mathematics)

In our market, a **derivative** is a random variable that is \mathcal{F}_1 —measurable.

- The value of the derivative depends on the realization of the underlying variables at date t = 1.
- If S_1 is the underlying asset, then any derivative can be written as a \mathcal{F}_1 —measurable function of S_1 .

Example

A call with underlying x and strike K is a derivative that takes the form $\phi: x \longmapsto (x - K)^+$.

Binomial tree (Part 2)

Question

What is the value of a derivative at date t = 0?

Example (D')

A 3-month call option on the stock has a strike price of 21.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chanter 2

22 / 62

Binomial tree (Part 2)

- To tackle the question we will use a portfolio that replicates the derivative.
- Namely, we will build two self-financing portfolios.
 - ► One such a portfolio uses the risky asset while the other does not.
 - Both portfolios are built so that they take the same value at date t = 1.
 - ▶ NAO then implies that they have same value at date t = 0.

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 22 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 24 / 6

Simple portfolio strategies

Definition

A **simple portfolio strategy** consists in using a part of an initial amount of cash x to buy (at the initial date) a risky asset in quantity Δ , and to invest the other part of x in a non-risky asset.

We denote this strategy by the pair (x, Δ) and its value at date t by $X_t^{x,\Delta}$.

By definition, in our setup, we have

$$X_0^{x,\Delta} = \Delta S_0 + (x - \Delta S_0) \mathbf{1} = x. \tag{1}$$

and

$$X_{1}^{x,\Delta}=\Delta S_{1}+\left(x-\Delta S_{0}
ight)R=xR+\Delta\left(S_{1}-S_{0}R
ight).$$

• This strategy is self-financing. It is called *simple* because it only uses standard assets: the non-risky and the risky ones.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

25 / 63

Binomial tree (Part 2)

Simple portfolio strategies

Theorem (2.1)

In our market, every derivative is replicable by using a simple portfolio strategy (x, Δ) .

Proof.

Binomial tree (Part 2) Simple portfolio strategies

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

hapter 2

27 / 63

Binomial tree (Part 2) Simple portfolio strategies

• So, under NAO, the price of a derivative in period t = 0 is given by

$$C_0 = X_0^{x,\Delta} = x$$
$$= \frac{1}{R} \left(\frac{R-d}{u-d} C_1^u + \frac{u-R}{u-d} C_1^d \right)$$

which is a weighted sum of its future values C_1^u and C_1^d .

Example (D")

Assume the 3 months risk-free rate is 3.05% . We then obtain

$$C_0 = \frac{1}{1.0305} \left(\frac{1.0305 - 0.9}{1.1 - 0.9} \right) \simeq 0.633$$

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 26 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 28 / 6

Simple portfolio strategies

- A market where every asset is replicable with a simple portfolio strategy is said to be **complete**.
- Now let us study how the initial value of a simple portfolio strategy, $X_0^{x,\Delta}$, depends on its future value, $X_1^{x,\Delta}$.

Definition

A **simple arbitrage** is a simple portfolio strategy that gives to a portfolio no value at time t = 0 and a value at time t = 1 which is strictly positive with positive probability and is never negative.

Formally, it is a pair $(x = 0, \Delta)$ with $\Delta \in \mathbb{R}$ such that

$$X_1^{0,\Delta} \ge 0$$
 and $\mathbb{P}(X_1^{0,\Delta} > 0) > 0$.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

29 / 63

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

31 / 63

Binomial tree (Part 2) Simple portfolio strategies

Definition

We say that there is no simple arbitrage opportunity (NAO') if

$$\forall \Delta \in \mathbb{R}, \ \{X_1^{0,\Delta} \geq 0 \implies X_1^{0,\Delta} = 0 \ \mathbb{P} - a.s.\}$$

Proposition (2.2)

If NAO' then d < R < u.

Binomial tree (Part 2)

Simple portfolio strategies

Proof.

Binomial tree (Part 2) Simple portfolio strategies

Proof.

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 30 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing

Binomial tree (Part 2) Simple portfolio strategies

• Let \tilde{X} denotes the **current value** of the portfolio X at date t=0,1:

$$ilde{X}^{\mathsf{x},\Delta}_t := rac{\mathsf{X}^{\mathsf{x},\Delta}_t}{\mathsf{R}^t}.$$

So, we have

$$\tilde{X}_0^{x,\Delta} = x$$

and

$$\tilde{X}_{1}^{x,\Delta} = \frac{xR + \Delta (S_{1} - S_{0}R)}{R} \\
= x + \Delta \left(\frac{S_{1}}{R} - S_{0}\right) = x + \Delta (\tilde{S}_{1} - S_{0})$$

 In term of current values, the portfolio self-financing condition then writes as

$$\tilde{X}_{1}^{x,\Delta} - \tilde{X}_{0}^{x,\Delta} = \Delta \left(\tilde{S}_{1} - \tilde{S}_{0} \right).$$

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

33 / 63

Jérôme MATHIS (LEDa)

Basic notions on Probability (Part 3)

Chapter 2: Binomial tree with one period Outline

- Introduction
- Basic notions on Probability (Part 1)
- 3 Binomial tree (Part 1)
- Basic notions on Probability (Part 2)
- Binomial tree (Part 2)Simple portfolio strategies
- Basic notions on Probability (Part 3)
- Binomial tree (Part 3)

 Evaluating and hedging derivative

Basic notions on Probability (Part 3)

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a *probability space*. A **stochastic process** is a collection of random variables on Ω , indexed by a totally ordered set T (e.g., referring to time).

Formally, a stochastic process X is a collection $(X_t)_{t \in T}$ where each X_t is a random variable on Ω .

• When $T = \{1, 2, ..., n\}$ the stochastic process is discrete. We will denote it as $(X_k)_{1 \le k \le n}$.

Arbitrage&Pricing

Definition (Preliminary)

A **martingale** is a stochastic process with finite means, in which the conditional expectation of the next value, given the current and preceding values, is the current value.

Formally, the stochastic process $(X_t)_{t \in T}$ is a martingale if for any time n we have

$$\mathbb{E}\left[\left|X_{n}\right|\right]<+\infty$$

and

$$\mathbb{E}\left[X_{n+1}|X_1,...,X_n\right]=X_n.$$

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 34 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 36 / 6

Basic notions on Probability (Part 3)

- Originally, martingale referred to a class of betting strategies that was popular in 18th-century France.
- The simplest of these strategies was designed for a game in which the gambler wins his stake if a coin comes up heads and loses it if the coin comes up tails.
 - ► The strategy had the gambler double his bet after every loss so that the first win would recover all previous losses plus win a profit equal to the original stake.
 - As the gambler's wealth and available time jointly approach infinity, his probability of eventually flipping heads approaches 1, which makes the martingale betting strategy seem like a sure thing.
 - Observe that the exponential growth of the bets eventually bankrupts its users.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

37 / 6

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

• The idea is that an "equivalent martingale" measure is a probability

t is equal to the expected future payoff of the asset discounted at the risk-free rate, given the information structure available at time *t*.

Equivalently, a "risk-neutral" probability measure is a probability

measure under which the underlying risky asset has the same

measure under which the current value of all financial assets at time

Chapter 2

20.7.02

Basic notions on Probability (Part 3)

Definition

Two probability measures $\mathbb P$ and $\mathbb Q$ (on the same sample space Ω) are said to be **equivalent** if they define the same null sets. Formally, for any event $A \in \Omega$, $\mathbb P(A) = 0 \Longleftrightarrow \mathbb Q(A) = 0$.

Definition (Preliminary)

A risk-neutral probability measure or equivalent martingale measure (EMM) is a probability measure $\mathbb Q$ which is equivalent to $\mathbb P$ and for which any simple strategy expressed in current value is a martingale. Formally,

$$ilde{X}_0^{x,\Delta} = \mathbb{E}^{\mathbb{Q}} \left[ilde{X}_1^{x,\Delta}
ight]$$

or equivalently

$$X_0^{x,\Delta} = \frac{1}{R} \mathbb{E}^{\mathbb{Q}} \left[X_1^{x,\Delta} \right].$$

Chapter 2: Binomial tree with one period Outline

expected return as the non risky asset.

Basic notions on Probability (Part 3)

- 1 Introduction
- 2 Basic notions on Probability (Part 1)
- 3 Binomial tree (Part 1)
- Basic notions on Probability (Part 2)
- Binomial tree (Part 2)Simple portfolio strategies
- Basic notions on Probability (Part 3)
- Binomial tree (Part 3)
 - Evaluating and hedging derivative

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 38 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 40 / 63

Binomial tree (Part 3) Binomial tree (Part 3) Proposition (2.3) If d < R < u then there is an equivalent martingale measure \mathbb{Q} . Proof. Proof. Jérôme MATHIS (LEDa) Arbitrage&Pricing 41 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 Binomial tree (Part 3) Binomial tree (Part 3) Proof. Proposition (2.4) If there is an equivalent martingale measure Q then NAO' holds. Proof.

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 42 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 44 / 6

Following the two previous propositions, we have

$$NAO' \Longrightarrow d < R < u \Longrightarrow$$
 there is an equivalent martingale measure $\Longrightarrow NAO'$.

Hence we obtain

 $NAO' \iff d < R < u \iff$ there is an equivalent martingale measure.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

45 / 63

Binomial tree (Part 3)

Evaluating and hedging derivative

Proposition (2.5)

Assume NAO. The price of a derivative at time t=0 is given by

$$C_{0} = \frac{\mathbb{E}^{\mathbb{Q}}\left[C_{1}\right]}{1+r} = \frac{1}{R}\left(\mathbb{Q}\left(\omega_{u}\right)C_{1}^{u} + \mathbb{Q}\left(\omega_{d}\right)C_{1}^{d}\right) = \frac{1}{R}\left(qC_{1}^{u} + (1-q)C_{1}^{d}\right)$$

Proof.

Exercise. (Hint: Straightforwardly obtained from the previous section)

Binomial tree (Part 3)

Evaluating and hedging derivative

- Observe that the equivalent martingale measure does not depend on the probabilities p (and 1 p) of the state ω_u (and ω_d).
 - ► So, the price of an option is independent from the probability behind the evolution of the underlying asset.
 - * This is partly due to the fact that the replicating portfolio contains the underlying asset.
 - ► To determine the price of the derivative we then just need to know r, u, and d.

Question

How to determine *u* and *d*?

We shall see how this is correlated with the volatility of the asset.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

47 / 63

Binomial tree (Part 3)

Evaluating and hedging derivative

In the replicating portfolio, the quantity of the risky asset is given by

$$\Delta = \frac{C_1^u - C_1^d}{(u - d) \, S_0} = \frac{\phi \left(S_1^u \right) - \phi \left(S_1^d \right)}{(u - d) \, S_0}.$$

► This quantity measures how the price of the option varies with the underlying asset price variation.

Example $(D^{(4)})$

We then have

$$\Delta = \frac{1 - 0}{(1.1 - 0.9)20} = 0.25$$

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 46 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 48 / 63

Evaluating and hedging derivative

Example $(D^{(4)})$

The hedging strategy consists then:

- in buying 0.25 unit of the risky asset (the cost is $\Delta S_0 = 0.25 \times 20 = 5$); and
- to invest $(x \Delta S_0) = \frac{1}{1.0305} \frac{1.0305 0.9}{1.1 0.9} 5 \simeq -4.3668$ into the non-risky asset.

Doing so, we indeed obtain

$$-4.3668 \times 1.0305 + 0.25 \times 22 = 1 = C_1^u$$

and

$$-4.3668 \times 1.0305 + 0.25 \times 18 \simeq 0 = C_1^d$$

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

Binomial tree (Part 3)

Evaluating and hedging derivative

- An alternative way to determine Δ is to consider a portfolio consisting of a long position in Δ shares of the risky asset and a short position in one call option, and then to calculate the value of Δ that makes this portfolio riskless.
 - If there is an up movement in the stock price, the value of the portfolio at the end of the life of the option is

$$S_0u\Delta - C_1^u$$

If there is a down movement in the stock price, the value becomes

$$S_0 d\Delta - C_1^d$$

▶ The two are equal (i.e., $S_0u\Delta - C_1^u = S_0d\Delta - C_1^d$) when

$$\Delta = \frac{C_1^u - C_1^d}{(u - d) S_0}.$$

Binomial tree (Part 3)

Evaluating and hedging derivative

- The value of the portfolio:
 - at time 1 is $S_0u\Delta C_1^u$ (= $S_0d\Delta C_1^d$);
 - today is $\frac{S_0 u \Delta C_1^u}{4 + \epsilon}$:
- Another expression for the portfolio value today is $S_0\Delta C_0$
- Hence

$$C_0 = S_0 \Delta - \frac{S_0 u \Delta - C_1^u}{1 + r}$$

• Substituting for $\Delta = \frac{C_1^u - C_1^d}{S_2u - S_2d}$ we obtain

$$C_0 = \frac{qC_1^u + (1-q)C_1^d}{1+r}$$

where $q = \frac{1+r-d}{u-d}$, which confirms Proposition 2.5.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

Binomial tree (Part 3)

Evaluating and hedging derivative

Proposition (2.6)

If every asset is replicable with a simple portfolio strategy (complete market) then the equivalent martingale measure is unique.

Proof.

Jérôme MATHIS (LEDa) Arbitrage&Pricing

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

50 / 63

Evaluating and hedging derivative

Proof.

Thus, we have

$$\frac{\mathbb{E}^{\mathbb{Q}_1}\left[\mathbf{1}_{\mathcal{B}}\right]}{R} = x = \frac{\mathbb{E}^{\mathbb{Q}_2}\left[\mathbf{1}_{\mathcal{B}}\right]}{R}$$

Moreover, $\mathbf{1}_{\mathcal{B}}$ denoting the indicator function, for any probability \mathbb{Q} , we have

$$\mathbb{E}^{\mathbb{Q}}\left[\textbf{1}_{\mathcal{B}}\right]=\mathbb{Q}\left(\mathcal{B}\right)$$

So we obtain

$$\mathbb{Q}_{1}\left(\mathcal{B}\right)=\mathbb{Q}_{2}\left(\mathcal{B}\right)$$

That is, \mathbb{O}_1 and \mathbb{O}_2 are the same.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

53 / 63

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Binomial tree (Part 3)

Evaluating and hedging derivative

- It is natural to interpret q and 1-q as probabilities of up and down movements.
- The value of a derivative is then its expected payoff in a risk-neutral world discounted at the risk-free rate.
- When the probability of an up and down movements are q and 1-q the expected stock price at time 1 is $S_0(1+r)$.
- This shows that the stock price earns the risk-free rate.

Binomial tree (Part 3)

Evaluating and hedging derivative

- Binomial trees illustrate the general result that to value a derivative we can assume that:
 - ▶ The expected return on a stock (or any other investment) is the risk-free rate.
 - ► The discount rate used for the expected payoff on an option (or any other instrument) is the risk-free rate.
- This is known as using risk-neutral valuation.

Binomial tree (Part 3)

Evaluating and hedging derivative

• q is the probability that gives a return on the stock equal to the risk-free rate:

$$S_0(1+r) = S_1^u q + S_1^d(1-q).$$

The value of the option is

$$C_0 = \frac{C_1^u q + C_1^d (1 - q)}{1 + r}$$

Jérôme MATHIS (LEDa) Chapter 2 Jérôme MATHIS (LEDa) Arbitrage&Pricing Arbitrage&Pricing

Evaluating and hedging derivative

Example $(D^{(5)})$

We have

$$20(1.0305) = 22q + 18(1-q).$$

so that q = 0.6525. And

$$C_0 = \frac{1 \times 0.6525 + 0(1 - 0.6525)}{1.0305} \simeq 0.6332.$$

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2

57 / 63

Binomial tree (Part 3)

Evaluating and hedging derivative

Binomial tree (Part 3)

Evaluating and hedging derivative

Question

What is the Call price of a Call with $S_0 = 100$, K = 100, r = 0.05, d = 0.9 and u = 1.1?

Give a hedging strategy and depict a tree that illustrates the replication.

Solution

Binomial tree (Part 3)

Evaluating and hedging derivative

Solution

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 58 / 63 Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 60 / 6

Evaluating and hedging derivative Question What about a Put with the same characteristics? Solution Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 61/63

Binomial tree (Part 3) Evaluating and hedging derivative

Binomial tree (Part 3)

Solution		

Jérôme MATHIS (LEDa) Arbitrage&Pricing Chapter 2 62 / 63

Binomial tree (Part 3) Evaluating and hedging derivative

Jérôme MATHIS (LEDa)

Question				
Does the Ca	all-Put parity	holds?		
Solution				

Arbitrage&Pricing

Chapter 2