Arbitrage&Pricing Paris Dauphine University - Master I.E.F. (272) 2023/24

Jérôme MATHIS

www.jeromemathis.fr/a-p

LEDa

Chapter 2

Introduction Motivation

- A useful and very popular technique for pricing an option involves constructing a binomial tree.
	- This is a diagram representing different possible paths that might be followed by the stock price over the life of an option.
	- The underlying assumption is that the stock price follows a random walk

Basic notions on Probability (Part 1)

- A useful and very popular technique for pricing an option involves constructing a binomial tree.
- Let $(\Omega, \mathcal{F}, \mathbb{P})$ denotes a *probability space*. That is, a triple of:
	- \triangleright Ω a sample space which is the universe of possible outcomes:
	- \triangleright *F* a set of events, where an event is a subset of Ω ;
	- \triangleright P a probability function from F to [0, 1], which measures the likeliness that an event will occur

Basic notions on Probability (Part 1)

- \bullet Observe that for the probability $\mathbb P$ to be well-defined, the set of events F has to satisfy some properties:
	- \triangleright *F* is non-empty:
	- \triangleright F is closed under complementation: If A is in F, then so is its complement, $\Omega \backslash A$; and
	- \triangleright F is closed under countable unions: If A_1 , A_2 , A_3 , ... are in F, then so is $A = A_1 \cup A_2 \cup A_3 \cup ...$
- We say that such F is a σ -algebra (or σ -field).
	- In general, we will take $\mathcal F$ as the smallest σ -algebra generated by the experiment.

Basic notions on Probability (Part 1)

Basic notions on Probability (Part 1)

Example (A)

We consider the experiment that consists in rolling a dice and then checking whether the number 6 is the outcome.

So, $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{F}_A = \{\emptyset, \{6\}, \{1, 2, 3, 4, 5\}, \Omega\}.$

Example (B)

We consider the experiment that consists in rolling a dice and then checking whether the outcome is even.

So, $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{F}_B = \{\emptyset, \{2, 4, 6\}, \{1, 3, 5\}, \Omega\}.$

Basic notions on Probability (Part 1)

Example (C)

Jérôme MATHIS (LEDa)

We consider the experiment that consists in rolling a dice and then checking the outcome.

So, $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{F}_C = 2^{\Omega}$, where 2^{Ω} denotes the power set of the sample space.

Arbitrage&Pricing

I.e., \mathcal{F}_C has $2^6 = 64$ elements. E.g., one of this element is $\{2, 5\}$, which consists in checking whether the outcome is 2 or 5.

Binomial tree (Part 1)

- We consider a market with only two periods: $t = 0$ and $t = 1$.
- There are two assets.
	- A riskless asset who values 1 at date $t = 0$ and $R = (1 + r)$ at date $t = 1$. r denotes the risk-free interest rate that we could obtain with a zero coupon.
	- A risky asset S who values S_0 at date $t = 0$ and can take two different values at date $t = 1$: $S_1 \in \{S_1^u, S_1^d\}$ with $S_1^u = uS_0$, $S_1^d = dS_0$, and $d < u$.

Example (D)

Binomial tree (Part 1)

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ denotes the probability space corresponding to this market situation. We have:
	- $\bullet \ \Omega = {\omega_{\mu}, \omega_{\sigma}};$
	- \triangleright $\mathcal{F}_0 = {\varnothing, \Omega}$; $\mathcal{F}_1 = {\varnothing, {\{\omega_{\mu}\}, {\{\omega_{\mu}\}, \Omega\}}}$; and
	- Figure 1 = \mathbb{P} such that $\mathbb{P}(\omega_{\mu}) = p$ and $\mathbb{P}(\omega_{\mu}) = 1 p$, with $p \in (0, 1)$.
- Observe that $\mathcal{F}_0 \subset \mathcal{F}_1$: we acquire information through time.

Chapter 2

 $9/63$

Chapter 2: Binomial tree with one period Outline

Introduction

- Basic notions on Probability (Part 1)
- **Binomial tree (Part 1)**
- Basic notions on Probability (Part 2)
- **Binomial tree (Part 2)** • Simple portfolio strategies
- Basic notions on Probability (Part 3)
- **Binomial tree (Part 3)** • Evaluating and hedging derivative

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2 $13/63$

Basic notions on Probability (Part 2)

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A (real-valued) random variable is a (real) function $X : \Omega \longmapsto \mathbb{R}$ such that $\{\omega \in \Omega | X(\omega) \le x\} \in \mathcal{F}$ for every $x \in \mathbb{R}$.

• Said differently, a random variable is a function that assigns a numerical value to each state of the world, $X : \Omega \longmapsto \mathbb{R}$, such that the values taken by X are known to someone who has access to the information $\mathcal F$.

Example (A')

The window will be opened if and only if the maximal number of the dice is realized.

By associating the number 1 to the action of opening the window and zero otherwise, we have:

$$
\mathsf{X}_{\mathsf{A}} = \left\{ \begin{array}{l} \mathsf{1} \text{ if } \omega = \{\mathsf{6}\} \\ 0 \text{ otherwise.} \end{array} \right.
$$

Observe that we can use \mathcal{F}_A (or \mathcal{F}_C) but not \mathcal{F}_B .

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2 $15/63$

Basic notions on Probability (Part 2)

Example (B')

You earn 100 \in if the realization of the dice is even and you lose 50 \in otherwise.

$$
\mathsf{X}_\mathsf{B} = \left\{\begin{array}{c} +100 \text{ if } \omega \in \{2,4,6\} \\ -50 \text{ otherwise.} \end{array}\right.
$$

Observe that we can use \mathcal{F}_B (or \mathcal{F}_C) but not \mathcal{F}_A .

Example (C')

You earn $15 \in$ if the realization of the dice is 5 and zero otherwise.

$$
\zeta_C = \left\{ \begin{array}{c} +15 \text{ if } \omega = \{5\} \\ 0 \text{ otherwise.} \end{array} \right.
$$

Observe that we can use \mathcal{F}_C but neither \mathcal{F}_A nor \mathcal{F}_B .

Let F denotes a σ -algebra associated with Ω .

A (real) function $X : \Omega \rightarrow \mathbb{R}$ is $\mathcal{F}-$ **measurable** if, for any two numbers $a, b \in \mathbb{R}$, all the states of the world $\omega \in \Omega$ for which X takes value between a and b forms a set that is an event (an element of \mathcal{F}).

Formally, $\forall a, b \in \mathbb{R}$, $a < b$, we have $\{\omega \in \Omega | a < X(\omega) < b\} \in \mathcal{F}$.

- So, a random variable is F measurable if and only if it is known with the information given by $\mathcal F$.
	- I.e., for any two numbers, we are able to answer the question on whether the realization of the random variable belongs to the interval formed by these two numbers.
	- ► Roughly speaking, we are able to say what actually happened.

Jérôme MATHIS (LEDa)

Arbitrage&Pricing

Chapter 2 $17/63$

Basic notions on Probability (Part 2)

Example (A")

 X_A is \mathcal{F}_A -measurable and \mathcal{F}_C -measurable but is not \mathcal{F}_B -measurable.

Example (B")

 X_B is \mathcal{F}_B -measurable and \mathcal{F}_C -measurable but is not \mathcal{F}_A -measurable.

Example (C")

 X_C is \mathcal{F}_C -measurable but neither \mathcal{F}_A -measurable nor \mathcal{F}_B -measurable.

Basic notions on Probability (Part 2)

- A more general definition is that a function $X: G \rightarrow H$ is measurable if the preimage under X of every element in the σ – algebra associated with H is in the σ – algebra associated with G.
	- Formally, if G (resp. H) is the σ -algebra associated to G (resp. H), then $X^{-1}(v) := \{q \in G | X(q) = v \} \in \mathcal{G}, \forall v \in \mathcal{H}.$
	- The idea is that a measurable function pulls back measurable sets.
- The notion of measurability depends on the σ -algebras that are used.
	- In our definition, as the σ -algebra associated with R we took the Borel σ -algebra on the reals, i.e., the smallest σ -algebra on R which contains all the intervals

Arbitrage&Pricing

Chapter 2: Binomial tree with one period **Outline**

Introduction

Jérôme MATHIS (LEDa)

- Basic notions on Probability (Part 1)
- **Binomial tree (Part 1)**
- Basic notions on Probability (Part 2)
- **Binomial tree (Part 2)** • Simple portfolio strategies

Basic notions on Probability (Part 3)

Binomial tree (Part 3)

Evaluating and hedging derivative

Chapter 2

-
- -
-

• The risky asset S (who values S_0 at date $t = 0$ and can take two
different values at date $t = 1$: $S_1 \in \{S_1^u, S_1^d\}$ is a random variable
that is \mathcal{F}_1 —measurable, but is not \mathcal{F}_0 —measurable.

• That is, **•** That is, the information known at date 0 is not sufficient to say what

is the realization of S.

• Instead, we have to wait until date 1.

• Observe that \mathcal{F}_1 is the smallest σ -algebra that makes S

measurabl Stock price = \$20

Option Price = \$1

Option Price = \$1

Option Price = \$1

Stock Price = \$1

Option Price • If S_1 is the underlying asset, then any derivative can be written as a \mathcal{F}_1 -measurable function of S₁. Example A call with underlying x and strike K is a derivative that takes the form

 $\phi: x \longmapsto (x - K)^{+}.$

$$
X_0^{x,\Delta} = \Delta S_0 + (x - \Delta S_0) \mathbf{1} = x. \tag{1}
$$

$$
X_1^{x,\Delta} = \Delta S_1 + (x - \Delta S_0) R = xR + \Delta (S_1 - S_0 R).
$$

Simple portfolio strategies

Theorem (2.1)

In our market, every derivative is replicable by using a simple portfolio strategy (x, Δ) .

Simple portfolio strategies

• So, under NAO, the price of a derivative in period $t = 0$ is given by

$$
C_0 = X_0^{x,\Delta} = x
$$

=
$$
\frac{1}{R} \left(\frac{R-d}{u-d} C_1^u + \frac{u-R}{u-d} C_1^d \right)
$$

which is a weighted sum of its future values C_1^u and C_1^d .

Example (D")

Assume the 3 months risk-free rate is 3.05%. We then obtain

$$
C_0=\frac{1}{1.0305}\left(\frac{1.0305-0.9}{1.1-0.9}\right)\simeq 0.633
$$

Jérôme MATHIS (LEDa)

Chapter 2 26/63

- A market where every asset is replicable with a simple portfolio strategy is said to be complete.
- Now let us study how the initial value of a simple portfolio strategy, $X_0^{x,\Delta}$, depends on its future value, $X_1^{x,\Delta}$.

A simple arbitrage is a simple portfolio strategy that gives to a portfolio no value at time $t = 0$ and a value at time $t = 1$ which is strictly positive with positive probability and is never negative.

Formally, it is a pair $(x = 0, \Delta)$ with $\Delta \in \mathbb{R}$ such that

 $X_1^{0,\Delta} \ge 0$ and $\mathbb{P}(X_1^{0,\Delta} > 0) > 0$.

Arbitrage&Pricing

Jérôme MATHIS (LEDa)

Chapter 2

29/63

Binomial tree (Part 2) Simple portfolio strategies

Definition

We say that there is no simple arbitrage opportunity (NAO') if

$$
\forall \Delta \in \mathbb{R}, \ \{X_1^{0,\Delta} \geq 0 \implies X_1^{0,\Delta} = 0 \ \mathbb{P}-a.s.\}
$$

Proposition (2.2)

If NAO' then $d < R < u$.

Simple portfolio strategies

$$
\tilde{X}^{\mathsf{x}, \Delta}_t := \frac{X^{\mathsf{x}, \Delta}_t}{R^t}.
$$

 $\tilde{X}_{0}^{X,\Delta}=x$

 In term of current values, the portfolio self-financing condition then

$$
\tilde{X}^{x,\Delta}_1-\tilde{X}^{x,\Delta}_0=\Delta\left(\tilde{S}_1-\tilde{S}_0\right).
$$

collection of random variables on Ω , indexed by a totally ordered set \mathcal{T}
(e.g., referring to time).
Formally, a stochastic process X is a collection $(X_t)_{t \in \mathcal{T}}$ where each X_t
is a random variable on Ω .
• time).

aastic process X is a collection $(X_t)_{t \in T}$ where each X_t

able on Ω .
 $2, ..., n$ the stochastic process is discrete. We will
 $X_k)_{1 \leq k \leq n}$.

Aralitage&Priding
 a on Probability (Part 3)

iminary)

a stoch Chapter 2: Binomial tree with one period Outline **Introduction** Basic notions on Probability (Part 1) **Binomial tree (Part 1)** Basic notions on Probability (Part 2) n we have **Binomial tree (Part 2)** $\mathbb{E} \left[|X_n| \right] < +\infty$ • Simple portfolio strategies and Basic notions on Probability (Part 3) $E[X_{n+1}|X_1,...,X_n]=X_n$ **Binomial tree (Part 3)** • Evaluating and hedging derivative

Definition

Jérôme MATHIS (LEDa)

-
- **CERT AS THE FIRST WARE THE FIRST WAT AS THE FIRST WIND SEVERALLY (Part 3)**

Samally, martingale referred to a class of betting strategies that

simplest of these strategies was designed for a game in which

simplest of th **Example in the gambler of the gambler of the gambler with and available time joint and available time jointly approach infinity, the stategies were stategies were stategies was designed for a game in which

The idea is th CONDITY (Part 3)**

Inally, martingale referred to a class of betting strategies that

simplest of these strategies was designed for a game in which

simplest of these strategies was designed for a game in which

simplest
	-
	-
	-
- sic notions on Probability (Part 3)
The idea is that an "equivalent martingale" measure is a probability
measure under which the current value of all financial assets at time
t is equal to the expected future payoff of th
	-

stake if a coin comes up heads and loses it if measure under which the current value of all

is.

It is equal to the expected future payoff of the

recover all previous losses plus win a profit equal

recover all previous

the first win would recover all previous losses plus win a profit equal

to the original stake.

As the gambler's wealth and available time jointly approach infinity,

his probability of eventually flipping heads approach

 $\widetilde{X}^{\scriptscriptstyle{X,\Delta}}_0 = \mathbb{E}^{\mathbb{Q}} \left[\widetilde{X}^{\scriptscriptstyle{X,\Delta}}_1 \right]$

or equivalently

$$
X_0^{x,\Delta} = \frac{1}{R} \mathbb{E}^{\mathbb{Q}} \left[X_1^{x,\Delta} \right].
$$

-
-
-
- **Binomial tree (Part 2)** • Simple portfolio strategies

Basic notions on Probability (Part 3)

Binomial tree (Part 3)

• Evaluating and hedging derivative

Chapter 2

Binomial tree (Part 3)

Proposition (2.3)

If $d < R < u$ then there is an equivalent martingale measure Q.

Binomial tree (Part 3)

 $43/63$ Chapter 2

 \Box

• Following the two previous propositions, we have

 $NAO' \Longrightarrow d < R < u \Longrightarrow$ there is an equivalent martingale measure $\Longrightarrow NAO'$.

- Hence we obtain
	- $NAO' \iff d < R < u \iff$ there is an equivalent martingale measure.

Arbitrage&Pricing

Binomial tree (Part 3) Evaluating and hedging derivative

- Observe that the equivalent martingale measure does not depend on the probabilities p (and $1-p$) of the state ω_{μ} (and ω_{d}).
	- \triangleright So, the price of an option is independent from the probability behind the evolution of the underlying asset.
		- \star This is partly due to the fact that the replicating portfolio contains the underlying asset.
	- \triangleright To determine the price of the derivative we then just need to know r. u , and d .

Question

How to determine u and d ?

• We shall see how this is correlated with the volatility of the asset.

Arbitrage&Pricing

Chapter 2 47/63

Binomial tree (Part 3) Evaluating and hedging derivative

• In the replicating portfolio, the quantity of the risky asset is given by

$$
\Delta = \frac{C_1^u - C_1^d}{(u-d) S_0} = \frac{\phi(S_1^u) - \phi(S_1^d)}{(u-d) S_0}.
$$

 \triangleright This quantity measures how the price of the option varies with the underlying asset price variation.

Binomial tree (Part 3)

Evaluating and hedging derivative

Proposition (2.5)

Jérôme MATHIS (LEDa)

Assume NAO. The price of a derivative at time $t = 0$ is given by

$$
C_0=\frac{\mathbb{E}^{\mathbb{Q}}\left[C_{1}\right]}{1+r}=\frac{1}{R}\left(\mathbb{Q}\left(\omega_{u}\right)C_{1}^{u}+\mathbb{Q}\left(\omega_{d}\right)C_{1}^{d}\right)=\frac{1}{R}\left(qC_{1}^{u}+\left(1-q\right)C_{1}^{d}\right)
$$

Proof.

Exercise. (Hint: Straightforwardly obtained from the previous section)

Jérôme MATHIS (LEDa)

Chapter 2 46/63

 \Box

Chapter 2

Binomial tree (Part 3) Evaluating and hedging derivative

Example $(D⁽⁴⁾)$

The hedging strategy consists then:

- in buying 0.25 unit of the risky asset (the cost is $\Delta S_0 = 0.25 \times 20 = 5$; and

 $\frac{0.0305-0.9}{0.0305-0.9} = 5 \sim -4.3668$ in $.0305$ 1.1–0.9 \sim – $.1-0.9$ $.0000$ non-risky asset. Doing so, we indeed obtain

$$
-4.3668\times1.0305+0.25\times22=1=C_1^u
$$

and

$$
-4.3668\times1.0305+0.25\times18\simeq0={C_1^d}.
$$

Arbitrage&Pricing

Jérôme MATHIS (LEDa)

Chapter 2

49/63

Binomial tree (Part 3) Evaluating and hedging derivative

- An alternative way to determine Δ is to consider a portfolio consisting of a long position in Δ shares of the risky asset and a short position in one call option, and then to calculate the value of Δ that makes this portfolio riskless.
	- If there is an up movement in the stock price, the value of the portfolio at the end of the life of the option is

$$
S_0 u\Delta-C_1^u
$$

If there is a down movement in the stock price, the value becomes

$$
\mathcal{S}_0d\Delta-C_1^d
$$

▶ The two are equal (i.e.,
$$
S_0 u\Delta - C_1^u = S_0 d\Delta - C_1^d
$$
) when

$$
\Delta = \frac{C_1^u - C_1^d}{(u - d) S_0}.
$$

\n- at time 1 is
$$
S_0 u \Delta - C_1^u
$$
 (= $S_0 d \Delta - C_1^d$);
\n- today is $\frac{S_0 u \Delta - C_1^u}{1 + r}$;
\n

-
- Hence

$$
C_0=S_0\Delta-\frac{S_0u\Delta-C_1^u}{1+r}
$$

Substituting for
$$
\Delta = \frac{C_1^u - C_1^d}{S_0 u - S_0 d}
$$
 we obtain

Part 3)

\nUsing derivative

\nportfolio:

\n
$$
u\Delta - C_{1}^{u} (= S_{0}d\Delta - C_{1}^{d});
$$
\n
$$
C_{1}^{u};
$$
\non for the portfolio value today is

\n
$$
S_{0}\Delta - C_{0}
$$
\n
$$
C_{0} = S_{0}\Delta - \frac{S_{0}u\Delta - C_{1}^{u}}{1+r}
$$
\n
$$
= \frac{C_{1}^{u} - C_{1}^{d}}{S_{0}u - S_{0}d}
$$
\nwe obtain

\n
$$
C_{0} = \frac{qC_{1}^{u} + (1-q)C_{1}^{d}}{1+r}
$$
\n, which confirms Proposition 2.5.

\nArbitragees Pricing

\nChapter 2 51/63

\nPart 3)

Jérôme MATHIS (LEDa)

Evaluating and hedging derivative

Proposition (2.6)

If every asset is replicable with a simple portfolio strategy (complete market) then the equivalent martingale measure is unique.

Proof. \Box

- Binomial trees illustrate the general result that to value a derivative we can assume that:
	- \triangleright The expected return on a stock (or any other investment) is the risk-free rate.
	- \triangleright The discount rate used for the expected payoff on an option (or any other instrument) is the risk-free rate.
- This is known as using risk-neutral valuation.

Evaluating and hedging derivative

 \bullet q is the probability that gives a return on the stock equal to the risk-free rate:

$$
S_0(1+r) = S_1^u q + S_1^d(1-q).
$$

• The value of the option is

$$
C_0 = \frac{C_1^u q + C_1^d (1 - q)}{1 + r}
$$

Binomial tree (Part 3)

Jérôme MATHIS (LEDa)

Evaluating and hedging derivative

• It is natural to interpret q and $1-q$ as probabilities of up and down movements.

Arbitrage&Pricing

- The value of a derivative is then its expected payoff in a risk-neutral world discounted at the risk-free rate.
- When the probability of an up and down movements are q and $1-q$ the expected stock price at time 1 is $S_0(1+r)$.
- This shows that the stock price earns the risk-free rate.

53/63

Chapter 2

Example $(D^{(5)})$

We have

 $20(1.0305) = 22q + 18(1 - q).$

so that $q = 0.6525$. And

 $C_0 = \frac{1 \times 0.6525 + 0(1 - 0.6525)}{1.0305} \simeq 0.6332.$

Binomial tree (Part 3) Evaluating and hedging derivative

Question

What is the Call price of a Call with $S_0 = 100$, $K = 100$, $r = 0.05$, $d = 0.9$ and $u = 1.1$?

Give a hedging strategy and depict a tree that illustrates the replication.

Solution

Binomial tree (Part 3) Evaluating and hedging derivative

Binomial tree (Part 3) Evaluating and hedging derivative

Binomial tree (Part 3)

Evaluating and hedging derivative

Question

What about a Put with the same characteristics?

Binomial tree (Part 3) Evaluating and hedging derivative

Question

Does the Call-Put parity holds?

Binomial tree (Part 3) Evaluating and hedging derivative

