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Simultaneous game

@ simultaneous games A simultaneous game is defined by:

@ A finite set of n players N = {1,2,...,n}

Simultaneous games

Outline

@ Strategy sets Sy, ..., Sp
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Simultaneous game Simultaneous game

A simultaneous game is defined by: A simultaneous game is defined by:

@ A finite set of n players N = {1,2,...,n} @ A finite set of n players N = {1,2,...,n}

@ Strategy sets Sy, ..., Sy @ Strategy sets Sy, ..., Sp

@ Payoff functions u; : S x ... x S, —— R for eachi € N. @ Payoff functions u; : Sy x ... x S, —— R foreach j € N.
@ Notation:

» A strategy profile s = (sq, ..., Sn) specifies a strategy for each player.
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Simultaneous game Simultaneous game
A simultaneous game is defined by: A simultaneous game is defined by:
@ A finite set of n players N = {1,2,...,n} @ A finite set of n players N = {1,2,...,n}
@ Strategy sets Sy, ..., Sy, @ Strategy sets Sy, ..., Sy
@ Payoff functions u; : S x ... x S, —— R for eachi € N. @ Payoff functions u; : Sy x ... x S, —— R foreach j € N.
@ Notation: @ Notation:

» A strategy profile s = (sq, ..., Sn) specifies a strategy for each player.

» Denote s_; = (s, ..., Sj_1,Sj+1, ..., Sp) the strategy of i’s opponents
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Beauty contest Beauty contest

@ Players? @ Players?
» all students N = {1,...,79}

@ Strategy sets?
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Beauty contest Beauty contest

@ Players? @ Players?
» all students N = {1, ..., 79} » all students N = {1, ..., 79}

@ Strategy sets?
» S;=1[0,100] foralli € N
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Beauty contest

@ Without showing your neighbor what you are doing, write down on a
@ Players? form either the letter « or the letter S.

» all students N = {1, ..., 79}

@ Strategy sets?
> S;=1[0,100] foralli € N

@ Payoff functions?
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Beauty contest

@ Without showing your neighbor what you are doing, write down on a
@ Players? form either the letter « or the letter S.

> all students N = {1, ..., 79} » Think of this as a ‘grade bid".

@ Strategy sets?
» S;=1[0,100] foralli € N

@ Payoff functions?
» u; = 1 if closest to half the average, 0 otherwise.
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@ Without showing your neighbor what you are doing, write down on a @ Without showing your neighbor what you are doing, write down on a
form either the letter a or the letter . form either the letter a or the letter .
» Think of this as a ‘grade bid’. » Think of this as a ‘grade bid’.
» We will randomly pair your form with one other form. » We will randomly pair your form with one other form.

» Neither you nor your pair will ever know with whom you were paired.

@ Here is how grades may be assigned for this course:
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Grade game Grade game
@ Without showing your neighbor what you are doing, write down on a @ Without showing your neighbor what you are doing, write down on a
form either the letter a or the letter . form either the letter a or the letter .
» Think of this as a ‘grade bid’. » Think of this as a ‘grade bid’.
» We will randomly pair your form with one other form. » We will randomly pair your form with one other form.
» Neither you nor your pair will ever know with whom you were paired. » Neither you nor your pair will ever know with whom you were paired.

@ Here is how grades may be assigned for this course:

» if you put « and your pair puts 3, then you will get grade A, and your
pair grade C;
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@ Without showing your neighbor what you are doing, write down on a @ Without showing your neighbor what you are doing, write down on a
form either the letter a or the letter . form either the letter a or the letter .
» Think of this as a ‘grade bid’. » Think of this as a ‘grade bid’.
» We will randomly pair your form with one other form. » We will randomly pair your form with one other form.
» Neither you nor your pair will ever know with whom you were paired. » Neither you nor your pair will ever know with whom you were paired.
@ Here is how grades may be assigned for this course: @ Here is how grades may be assigned for this course:
» if you put « and your pair puts 8, then you will get grade A, and your » if you put « and your pair puts 8, then you will get grade A, and your
pair grade C; pair grade C;
» if both you and your pair put «, then you both will get grade B~; » if both you and your pair put «, then you both will get grade B~;
» if you put B and your pair puts «, then you will get grade C, and your
pair grade A;

» if both you and your pair put g, then you will both get grade B™.
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@ Without showing your neighbor what you are doing, write down on a

form either the letter a or the letter . Your pair
» Think of this as a ‘grade bid’. alpha B
» We will randomly pair your form with one other form. alpha (B-, B-) (A, C)
> Nei ir wi i i You
Neither you nor your pair will ever know with whom you were paired. 8 o N

@ Here is how grades may be assigned for this course:

» if you put « and your pair puts B, then you will get grade A, and your

pair grade C; @ Vocabulary
» if both you and your pair put «, then you both will get grade B—;
» if you put B and your pair puts «, then you will get grade C, and your

pair grade A;
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Your pair Your pair
alpha B alpha B
alpha (B-, B-) (A, C) alpha (B-, B-) (A, C)
You You
B (C.A) (B+, B+) § (C,A) (B+, B+)
@ Vocabulary @ Vocabulary
» The possible choices, « or 3, are called ‘strategies’. » The possible choices, a or §, are called ‘strategies’.

» The grades - e.g., (A, C)-, are ‘outcomes’.

@ Q.: What do you play?
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@ Number of students having played « (resp. B):

Your pair
alpha B
alpha (B-, B-) (A, C)
You
B (C.A) (B+, B+)

@ Vocabulary

» The possible choices, « or 3, are called ‘strategies’.
» The grades - e.g., (A, C)-, are ‘outcomes’.
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@ Number of students having played « (resp. B): @ Number of students having played « (resp. B):

@ What strategy should a rational person choose in the Grade Game? @ What strategy should a rational person choose in the Grade Game?

» To answer this, we first need to know what that person cares about.
» What ‘payoff’ does each outcome yield for this person?
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Grade game Grade game
@ Number of students having played « (resp. B): @ Number of students having played « (resp. B):
@ What strategy should a rational person choose in the Grade Game? @ What strategy should a rational person choose in the Grade Game?
» To answer this, we first need to know what that person cares about. » To answer this, we first need to know what that person cares about.

» What ‘payoff’ does each outcome yield for this person?

@ Game theory can not tell us what payoffs to assign to outcomes.
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Grade game

Possible payoffs: selfish players

@ Number of students having played « (resp. p): @ Assume every player is selfish, only caring about her own grade
then (assuming she prefers A to B etc.) the payoffs associated to
@ What strategy should a rational person choose in the Grade Game? the outcome might be as follows:

» To answer this, we first need to know what that person cares about.
» What ‘payoff’ does each outcome yield for this person?

@ Game theory can not tell us what payoffs to assign to outcomes.

» This depends on the preferences (and moral sentiments?) of the
players, not just you but also your opponents.
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Grade game
Possible payoffs: selfish players
@ Number of students having played « (resp. p): @ Assume every player is selfish, only caring about her own grade
then (assuming she prefers A to B etc.) the payoffs associated to
@ What strategy should a rational person choose in the Grade Game? the outcome might be as follows:
» To answer this, we first need to know what that person cares about. » A = 3 points; BT = 1 points; B~ = 0 points; and C = —1 points.

» What ‘payoff’ does each outcome yield for this person?

@ Game theory can not tell us what payoffs to assign to outcomes.

» This depends on the preferences (and moral sentiments?) of the
players, not just you but also your opponents.

@ But game theory has a lot to say about how to play the game once
payoffs are known.
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Grade game

Possible payoffs: selfish players

Grade game
Possible payoffs: selfish players

@ Assume every player is selfish, only caring about her own grade
then (assuming she prefers A to B etc.) the payoffs associated to
the outcome might be as follows:

» A = 3 points; Bt = 1 points; B~ = 0 points; and C = —1 points.
@ So, the payoffs matrix writes as:
Your pair
alpha B
alpha (0, 0) (3,-1)
B (-1,3) (1, 1)

You
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Grade game

Your pair
alpha B
alpha (0, 0) (3,-1)

§ (-1,3) (1,1

You

@ Q.: What should you choose in this case?
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Grade game

Possible payoffs: selfish players

@ Assume every player is selfish, only caring about her own grade
then (assuming she prefers A to B etc.) the payoffs associated to
the outcome might be as follows:

» A = 3 points; Bt = 1 points; B~ = 0 points; and C = —1 points.
@ So, the payoffs matrix writes as:
Your pair
alpha B
alpha 0, 0) 3, -1)
B (-1,3) (1,1)

You

@ Q.: What should you choose in this case?
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Possible payoffs: selfish players

Your pair
alpha B
alpha (0, 0) (3,-1)

§ (-1,3) (1.1

You

@ Q.: What should you choose in this case?

@ A.: If your pair chooses «, then you choosing « yields a higher
payoff than you choosing g.
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Grade game

Possible payoffs: selfish players

Definitions
Dominant and dominated strategies

Your pair
alpha B
alpha (0, 0) (3,-1)

§ (-1.3) (1,1)

You

@ Q.: What should you choose in this case?

@ A.: If your pair chooses «, then you choosing « yields a higher
payoff than you choosing B.

» If your pair chooses B, then again, you choosing « yields a higher
payoff than you choosing S.
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Grade game

Definition (Informal)

A strategy is dominated if, regardless of what any other players do,
the strategy earns a player a smaller payoff than some other strategy.
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Definitions

Possible payoffs: selfish players

Your pair
alpha B
alpha (0, 0) (3,-1)

§ (-1,3) (1.1

You

@ Q.: What should you choose in this case?

@ A.: If your pair chooses «, then you choosing « yields a higher
payoff than you choosing B.

» If your pair chooses B, then again, you choosing « yields a higher
payoff than you choosing S.

@ So, you should always choose « because the payoff from a is strictly
higher than that from g regardless of others’ choices.
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Dominant and dominated strategies

Definition (Informal)

A strategy is dominated if, regardless of what any other players do,
the strategy earns a player a smaller payoff than some other strategy.

Definition (Formal)

A strategy s; is (strictly) dominated if there exits some s; € S; such
that for all s_; € S_; we have u;(s,s_;) > u;(sj, S_;)
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Definitions

Dominant and dominated strategies

Definition (Informal)

A strategy is dominated if, regardless of what any other players do,
the strategy earns a player a smaller payoff than some other strategy.

Definition (Formal)

A strategy s; is (strictly) dominated if there exits some s; € S; such
that for all s_; € S_; we have u;(s], s_;) > u;(s;, s_j)

In the Grade game, § is a strictly dominated strategy \
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Definitions

Dominant and dominated strategies

Definition (Informal)

A strategy is dominated if, regardless of what any other players do,
the strategy earns a player a smaller payoff than some other strategy.

Definition (Formal)

A strategy s; is (strictly) dominated if there exits some s; € S; such
that for all s_; € S_; we have u;(s], s_;) > u;(s;, s_j)

In the Grade game, § is a strictly dominated strategy \

As a “rational” player, you should never play a strictly dominated
strategy.
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Definitions
Dominant and dominated strategies

Definition (Informal)

A strategy is dominated if, regardless of what any other players do,
the strategy earns a player a smaller payoff than some other strategy.

Definition (Formal)

A strategy s; is (strictly) dominated if there exits some s; € S; such
that for all s_; € S_; we have u;(s, s_;) > u;(sj, S_;)

In the Grade game, § is a strictly dominated strategy \

As a “rational” player, you should never play a strictly dominated
strategy.
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Definitions
Dominant and dominated strategies

Definition (Informal)

A strategy is dominant if, regardless of what any other players do, the
strategy earns a player a larger payoff than any other.
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Definitions

Dominant and dominated strategies

Definition (Informal)

A strategy is dominant if, regardless of what any other players do, the
strategy earns a player a larger payoff than any other.

Definition (Formal)

A strategy s; is (strictly) dominant if for every s; € S; and all
s_j € S_; we have u;(s;, s_;) > uj(s], s_j).
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Definitions

Definitions
Dominant and dominated strategies

Definition (Informal)

A strategy is dominant if, regardless of what any other players do, the
strategy earns a player a larger payoff than any other.

Definition (Formal)

A strategy s; is (strictly) dominant if for every s/ € S; and all
s_j € S_;j we have u;(sj, s_;) > ui(s],s_j).

In the Grade game, « is a dominant strategy. I

As a “rational” player, you should always play a dominant strategy (if
you have one to play).
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Grade game

Dominant and dominated strategies

Definition (Informal)

A strategy is dominant if, regardless of what any other players do, the
strategy earns a player a larger payoff than any other.

Definition (Formal)

A strategy s; is (strictly) dominant if for every s; € S; and all
s_j € S_; we have u;(s;, s_;) > uj(s], s_j).

In the Grade game, « is a dominant strategy. \

As a “rational” player, you should always play a dominant strategy (if
you have one to play).
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Possible payoffs: selfish players

Your pair
alpha B
alpha (0, 0) (3,-1)
You
B (-1 ’ 3) (1 ’ 1 )

@ Unfortunately, the reasoning is the same for your pair:
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Grade game Grade game

Possible payoffs: selfish players Possible payoffs: selfish players

Your pair Your pair
alpha B alpha B
alpha (0, 0) (3,-1) alpha 0, 0) 3, -1)
You You
B (-1!3) (111) B (-113) (1!1)
@ Unfortunately, the reasoning is the same for your pair: @ Unfortunately, the reasoning is the same for your pair:
» given these payoffs, she will also choose «. » given these payoffs, she will also choose «.

@ You will end up both getting B~ even though there is a possible
outcome (B*, B*) that is better for both of you.

» To use some economics jargon: the outcome (B—, B™) is Pareto
inefficient.
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Grade game Grade game
Possible payoffs: selfish players Possible payoffs: selfish players

Your pair Your pair
alpha B alpha B
alpha (0, 0) (3,-1) alpha (0, 0) (3,-1)
You You
B (-1!3) (111) B (-113) (1!1)
@ Unfortunately, the reasoning is the same for your pair: @ Games like this one are called Prisoners’ Dilemmas.

» given these payoffs, she will also choose «.

@ You will end up both getting B~ even though there is a possible

outcome (B™, B*) that is better for both of you.
Rational play by rational players can lead to bad outcomes. I
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Grade game

Grade game

Possible payoffs: selfish players

Your pair
alpha B
alpha (0, 0) (3, -1)

B (-1!3) (111)

You

@ Games like this one are called Prisoners’ Dilemmas.

» The jointly preferred outcome (B, B™) arises when each chooses
its individually worse strategy (i.e., p).

Rational play by rational players can lead to bad outcomes. ,
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Grade game

Possible payoffs: indignant altruistic players

@ Suppose that each person cares not only about her own grade but
also about the grade of the person with whom she is paired.

» For example, each player likes getting an A but she feels guilty that
this is at the expense of her pair getting a C.
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Grade game

Possible payoffs: indignant altruistic players

@ Suppose that each person cares not only about her own grade but
also about the grade of the person with whom she is paired.

Possible payoffs: indignant altruistic players

@ Suppose that each person cares not only about her own grade but
also about the grade of the person with whom she is paired.

» For example, each player likes getting an A but she feels guilty that
this is at the expense of her pair getting a C.

* The guilt lowers her payoff from 3 to —1.
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Grade game

Possible payoffs: indignant altruistic players

Grade game
Possible payoffs: indignant altruistic players

@ Suppose that each person cares not only about her own grade but
also about the grade of the person with whom she is paired.

» For example, each player likes getting an A but she feels guilty that
this is at the expense of her pair getting a C.

* The guilt lowers her payoff from 3 to —1.
* Conversely, if she gets a C because her pair gets an A, indignation
reduces the payoff from —1 to —3.
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Grade game
Possible payoffs: indignant altruistic players

@ Suppose that each person cares not only about her own grade but
also about the grade of the person with whom she is paired.

» For example, each player likes getting an A but she feels guilty that
this is at the expense of her pair getting a C.

* The guilt lowers her payoff from 3 to —1.
* Conversely, if she gets a C because her pair gets an A, indignation
reduces the payoff from —1 to —3.

Your pair
alpha B
alpha (0, 0) (-1,-3)

§ (-3,-1) (1,1

You
(-]

@ Q.: What should you choose in this case?
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Grade game
Possible payoffs: indignant altruistic players

@ Suppose that each person cares not only about her own grade but
also about the grade of the person with whom she is paired.

» For example, each player likes getting an A but she feels guilty that
this is at the expense of her pair getting a C.

* The guilt lowers her payoff from 3 to —1.
* Conversely, if she gets a C because her pair gets an A, indignation
reduces the payoff from —1 to —3.

Your pair
alpha B
alpha (0, 0) (-1,-3)

§ (-3,-1) (1,1

You

Your pair
alpha B
alpha (0, 0) (-1,-3)

§ (-3,-1) (1.1

You

@ Q.: What should you choose in this case?
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Grade game

Grade game
Possible payoffs: indignant altruistic players Possible payoffs: indignant altruistic players
Your pair Your pair
alpha B alpha B
alpha (0, 0) (-1,-3) alpha (0, 0) (-1,-3)
You You
§ (-3,-1) (1.1 § (-3,-1) (1.1

@ Q.: What should you choose in this case?
@ A.: If your pair chooses «, then you choosing « yields a higher
payoff than you choosing g.
» If your pair chooses B, however, then you choosing B yields a higher

payoff than you choosing «.
» In this case, no strategy is dominated.

@ Q.: What should you choose in this case?
@ A.: If your pair chooses «, then you choosing « yields a higher
payoff than you choosing B.
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Grade game

Grade game
Possible payoffs: indignant altruistic players Possible payoffs: indignant altruistic players
Your pair Your pair
alpha B alpha B
alpha (0, 0) (-1,-3) alpha (0, 0) (-1,-3)
You You
§ (-3,-1) (1.1 § (-3,-1) (1.1

@ Q.: What should you choose in this case?
@ A.: If your pair chooses «, then you choosing « yields a higher
payoff than you choosing §.
» If your pair chooses B, however, then you choosing B yields a higher

payoff than you choosing «.
» In this case, no strategy is dominated.
» The best choice depends on what you think your pair is likely to do.

@ Q.: What should you choose in this case?
@ A.: If your pair chooses «, then you choosing « yields a higher
payoff than you choosing B.
» If your pair chooses B, however, then you choosing § yields a higher
payoff than you choosing «.

Chap.1 Simultaneous games 15/133
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Grade game

Possible payoffs: indignant altruistic players

Your pair
alpha B
alpha (0, 0) (-1,-3)
You
g (-3,-1) (1,1

@ Q.: What should you choose in this case?
@ A.: If your pair chooses «, then you choosing « yields a higher
payoff than you choosing B.

» If your pair chooses j, however, then you choosing § yields a higher
payoff than you choosing «.

» In this case, no strategy is dominated.

» The best choice depends on what you think your pair is likely to do.

» Later in the course, we will examine games like this called
‘co-ordination games’.
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Grade game

Grade game

Possible payoffs: selfish player vs indignant altruistic player

@ Suppose you are a selfish player playing with an indignant altruistic
player.
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Grade game

Possible payoffs: indignant altruistic players

To figure out what actions you should choose in a game, a good first
step is to figure out what are your payoffs (what do you care about)
and what are other players’ payoffs.
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Possible payoffs: selfish player vs indignant altruistic player

@ Suppose you are a selfish player playing with an indignant altruistic

player.
Your pair
alpha B
alpha (0, 0) (3,-3)
You
° B (-1 ’ -1 ) (1 ’ 1)
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@ Suppose you are a selfish player playing with an indignant altruistic

player.
Your pair
alpha B
alpha (0,0) (3,-3)
You
B (-11 -1) (1v 1)

@ Q.: What should you choose in this case?
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Grade game

@ Suppose you are an indignant altruistic player playing with a selfish
player.
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Grade game

Possible payoffs: selfish player vs indignant altruistic player

@ Suppose you are a selfish player playing with an indignant altruistic

player.
Your pair
alpha B
alpha (0,0) (3,-3)
You
B (-11 -1) (1v 1)

°
@ Q.: What should you choose in this case?
@ A.: Your strategy « strictly dominates your strategy p.
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@ Suppose you are an indignant altruistic player playing with a selfish

player.
Your pair
alpha B
alpha (0, 0) (-1,-1)
You
° g (-3,3) (1.1)

@ Q.: What should you choose in this case?
@ A.: Neither of your strategies dominates the other.
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@ Suppose you are an indignant altruistic player playing with a selfish

player.
Your pair
alpha B
You alpha (0, 0) (-1,-1)
B (-3,3) (1,1)

°
@ Q.: What should you choose in this case?
@ A.: Neither of your strategies dominates the other.

» But, your pair’s strategy « strictly dominates her strategy p.
» Therefore, if you know she is rational then you know she’ll play a.
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Grade game

Possible payoffs: indignant altruistic player vs selfish player

@ Suppose you are an indignant altruistic player playing with a selfish

player.
Your pair
alpha B
alpha (0, 0) (-1,-1)
You
° g (-3,3) (1.1

@ Q.: What should you choose in this case?
@ A.: Neither of your strategies dominates the other.

» But, your pair’s strategy « strictly dominates her strategy B.
» Therefore, if you know she is rational then you know she’ll play «.
» In which case, you should play «.
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Grade game

Grade game

Conclusion

@ What do real people do in Prisoners’ Dilemmas?
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Grade game
Conclusion

Possible payoffs: indignant altruistic player vs selfish player

If you do not have a dominated strategy, put yourself in your
opponents’ shoes to try to predict what they will do.

In their shoes, you would not choose a dominated strategy. ’
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@ What do real people do in Prisoners’ Dilemmas?

» Only about % of the class chose § in the grade game.
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Conclusion Conclusion

@ What do real people do in Prisoners’ Dilemmas? @ What do real people do in Prisoners’ Dilemmas?

v

» Only about % of the class chose g in the grade game. Only about % of the class chose B in the grade game.

v

» In larger experiments with ‘normal people’, about 30% chose (the In larger experiments with ‘normal people’, about 30% chose (the
analogue of) B. analogue of) B.

v

Does this mean that Dauphine students are smarter than normal
folk?

v

Not necessarily. It could just be that Dauphine students are selfish.
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Prisoner’s dilemma

Grade game

Conclusion

@ Conductor of orchestra under Stalin era.
@ What do real people do in Prisoners’ Dilemmas?

» Only about % of the class chose g in the grade game.

» In larger experiments with ‘normal people’, about 30% chose (the
analogue of) B.

» Does this mean that Dauphine students are smarter than normal
folk?
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Prisoner’s dilemma Prisoner’s dilemma

@ Conductor of orchestra under Stalin era. @ Conductor of orchestra under Stalin era.
@ « Your friend Tchaikovsky has already confessed! » @ « Your friend Tchaikovsky has already confessed! »

@ Choose between: to stay silent/to denounce.

@ In all case:
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@ Choose between: to stay silent/to denounce. @ Choose between: to stay silent/to denounce.

@ In all case:

» to be denounced increases the sentence; and
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Prisoner’s dilemma Prisoner’s dilemma

@ Conductor of orchestra under Stalin era.
@ 4 possible outcomes (conductor’s years in jail):
@ « Your friend Tchaikovsky has already confessed! »
He denounces and he is not denounced: 1 year;

@ Choose between: to stay silent/to denounce.

@ In all case:

» to be denounced increases the sentence; and

» to denounce decreases it.

Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 21/133 [Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 22 /133

Prisoner’s dilemma Prisoner’s dilemma

@ 4 possible outcomes (conductor’s years in jail): @ 4 possible outcomes (conductor’s years in jail):

He denounces and he is not denounced: 1 year;

He stays silent and he is not denounced: 3 years;
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Prisoner’s dilemma Prisoner’s dilemma

@ Strategy sets Sy = S, = {Denounce, Stay silent}
@ 4 possible outcomes (conductor’s years in jail):

He denounces and he is not denounced: 1 year;
He stays silent and he is not denounced: 3 years;

He denounces and he is denounced: 10 years;
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Prisoner’s dilemma Prisoner’s dilemma

@ Strategy sets Sy = S, = {Denounce, Stay silent}
@ 4 possible outcomes (conductor’s years in jail):

@ Payoffs, fori =1, 2:
He denounces and he is not denounced: 1 year;

He stays silent and he is not denounced: 3 years;
He denounces and he is denounced: 10 years;

He denounces but he is denounced: 25 years.
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Prisoner’s dilemma Prisoner’s dilemma

@ Strategy sets Sy = S, = {Denounce, Stay silent} @ Strategy sets Sy = S, = {Denounce, Stay silent}
@ Payoffs, fori =1, 2: @ Payoffs, fori =1, 2:
» uj(Denounce, Denounce) = —10; » u;j(Denounce, Denounce) = —10;

» u;(Stay silent, Stay silent) = —3;

» u4(Stay silent, Denounce) = u,(Denounce, Stay silent) = —25; and
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Prisoner’s dilemma Prisoner’s dilemma

@ Strategy sets Sy = S, = {Denounce, Stay silent} @ Strategy sets Sy = S, = {Denounce, Stay silent}
@ Payoffs, fori =1, 2: @ Payoffs, fori =1, 2:
» u;(Denounce, Denounce) = —10; » u;j(Denounce, Denounce) = —10;

» u;(Stay silent, Stay silent) = —3;

v

ui(Stay silent, Stay silent) = —3;

v

u4(Stay silent, Denounce) = u,(Denounce, Stay silent) = —25; and

v

u41(Denounce, Stay silent) = u,(Stay silent, Denounce) = —1.
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Prisoner’s dilemma Prisoner’s dilemma

Represent the game in table: @ The same holds for Tchaikovsky namesake.

@ Individually rational strategy :

Player 2
Denounce Stays Silent
Denounce (-10,-10) (-1,-25)
Player 1
Stays Silent (-25,-1) (-3,-3)
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Prisoner’s dilemma Prisoner’s dilemma

@ The same holds for Tchaikovsky namesake. @ The same holds for Tchaikovsky namesake.
@ Individually rational strategy :

» To denounce
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Prisoner’s dilemma Prisoner’s dilemma

@ Later, when they meet in the Gulag, they compare stories and
@ The same holds for Tchaikovsky namesake. realize that they have been had.

@ Individually rational strategy :

» To denounce

@ Conductor’s best reply:
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Prisoner’s dilemma Prisoner’s dilemma

@ Later, when they meet in the Gulag, they compare stories and

@ The same holds for Tchaikovsky namesake. realize that they have been had.
@ Individually rational strategy : @ If only they had the opportunity to meet and talk things over before
they were interrogated, they could have agreed that neither would
» To denounce give in.

@ Conductor’s best reply:

» To denounce
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Prisoner’s dilemma

Prisoner’s dilemma

@ Later, when they meet in the Gulag, they compare stories and @ Each superpower prefers the outcome where others, are disarmed
realize that they have been had. while he is keeping his arsenal “just in case”.

Examples of prisoner’s dilemma: Nuclear race

@ If only they had the opportunity to meet and talk things over before
they were interrogated, they could have agreed that neither would
give in.

@ However, once separated, each one get a better deal by
double-crossing the other.
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Prisoner’s dilemma Prisoner’s dilemma
Examples of prisoner’s dilemma: Nuclear race
@ Later, when they meet in the Gulag, they compare stories and @ Each superpower prefers the outcome where others, are disarmed
realize that they have been had. while he is keeping his arsenal “just in case”.
o If only they had the opportunity to meet and talk th|ngs over before @ To be disarmed while others keep their arsenal is inconceivable.
they were interrogated, they could have agreed that neither would
give in.

@ However, once separated, each one get a better deal by
double-crossing the other.

@ Problem: As in the Grade game, the jointly preferred outcome
arises when each chooses its individually worse strategy.
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Prisoner’s dilemma

Examples of prisoner’s dilemma: Nuclear race

Prisoner’s dilemma
Examples of prisoner’s dilemma: Nuclear race

@ Each superpower prefers the outcome where others, are disarmed
while he is keeping his arsenal “just in case”.

@ To be disarmed while others keep their arsenal is inconceivable.

@ Hence everyone prefers to keep his arsenal.
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Prisoner’s dilemma
Examples of prisoner’s dilemma: Nuclear race

@ Each superpower prefers the outcome where others, are disarmed
while he is keeping his arsenal “just in case”.

@ To be disarmed while others keep their arsenal is inconceivable.
@ Hence everyone prefers to keep his arsenal.
@ One solution consists in:

> committing to start on the road of nuclear disarmament...
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Prisoner’s dilemma
Examples of prisoner’s dilemma: Nuclear race

@ Each superpower prefers the outcome where others, are disarmed
while he is keeping his arsenal “just in case”.

@ To be disarmed while others keep their arsenal is inconceivable.
@ Hence everyone prefers to keep his arsenal.

@ One solution consists in:

@ Each superpower prefers the outcome where others, are disarmed
while he is keeping his arsenal “just in case”.

@ To be disarmed while others keep their arsenal is inconceivable.
@ Hence everyone prefers to keep his arsenal.
@ One solution consists in:

> committing to start on the road of nuclear disarmament...

> ... then secretly breaking the pact.
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Prisoner’s dilemma Prisoner’s dilemma

Examples of prisoner’s dilemma: Nuclear race Another example of prisoner’s dilemma: Apps for Ipads
@ Each superpower prefers the outcome where others, are disarmed @ The Web is a non-commercial entity that enables information
while he is keeping his arsenal “just in case”. spread and commerce as nothing that has come before.

@ His success relies on two salient characteristics.
@ To be disarmed while others keep their arsenal is inconceivable.

@ Hence everyone prefers to keep his arsenal.
@ One solution consists in:

> committing to start on the road of nuclear disarmament...

> ... then secretly breaking the pact.

@ We shall study how to solve such avenues.
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Prisoner’s dilemma Prisoner’s dilemma
Another example of prisoner’s dilemma: Apps for Ipads Another example of prisoner’s dilemma: Apps for Ipads
@ The Web is a non-commercial entity that enables information @ The Web is a non-commercial entity that enables information
spread and commerce as nothing that has come before. spread and commerce as nothing that has come before.

@ His success relies on two salient characteristics.
@ Universality.
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Prisoner’s dilemma Prisoner’s dilemma

Another example of prisoner’s dilemma: Apps for Ipads Another example of prisoner’s dilemma: Apps for Ipads
@ The Web is a non-commercial entity that enables information @ The Web is a non-commercial entity that enables information
spread and commerce as nothing that has come before. spread and commerce as nothing that has come before.
@ His success relies on two salient characteristics. @ His success relies on two salient characteristics.
@ Universality. @ Universality.
» The web enables information to be accessed on any device, no » The web enables information to be accessed on any device, no
matter who built it, what software it runs or who created the content. matter who built it, what software it runs or who created the content.

» If it is converted to HTML, we all can see it (and even save or print it).

@ Connectivity.
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Prisoner’s dilemma Prisoner’s dilemma
Another example of prisoner’s dilemma: Apps for Ipads Another example of prisoner’s dilemma: Apps for Ipads
@ The Web is a non-commercial entity that enables information @ The Web is a non-commercial entity that enables information
spread and commerce as nothing that has come before. spread and commerce as nothing that has come before.
@ His success relies on two salient characteristics. @ His success relies on two salient characteristics.
@ Universality. @ Universality.
» The web enables information to be accessed on any device, no » The web enables information to be accessed on any device, no
matter who built it, what software it runs or who created the content. matter who built it, what software it runs or who created the content.
» If it is converted to HTML, we all can see it (and even save or print it). » If it is converted to HTML, we all can see it (and even save or print it).

@ Connectivity.

» Once a page is on the Web, it is theoretically connected to every
other page.
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Prisoner’s dilemma

Another example of prisoner’s dilemma: Apps for Ipads

@ The Web is a non-commercial entity that enables information
spread and commerce as nothing that has come before.

@ His success relies on two salient characteristics.
@ Universality.

» The web enables information to be accessed on any device, no
matter who built it, what software it runs or who created the content.
» If it is converted to HTML, we all can see it (and even save or print it).

@ Connectivity.

» Once a page is on the Web, it is theoretically connected to every
other page.
» It becomes part of the whole system.
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Prisoner’s dilemma

Prisoner’s dilemma

Another example of prisoner’s dilemma: Apps for Ipads

@ Today, universality and connectivity of the Web are threatened by
closed Internet applications or “apps” that are designed to be
proprietary, like those on devices such as iPads or iPhones and, to
a lesser extent, on web sites like Facebook.
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Prisoner’s dilemma

Another example of prisoner’s dilemma: Apps for Ipads

@ The Web is a non-commercial entity that enables information
spread and commerce as nothing that has come before.

@ His success relies on two salient characteristics.
@ Universality.

» The web enables information to be accessed on any device, no
matter who built it, what software it runs or who created the content.
» If it is converted to HTML, we all can see it (and even save or print it).

@ Connectivity.

» Once a page is on the Web, it is theoretically connected to every
other page.

» It becomes part of the whole system.

» Furthermore, linking allows us to vote for what we think is important.
Links, after all, form the basis of how search engines like Google help
us find what we’re looking for.

Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory

Chap.1 Simultaneous games 28 /133

Another example of prisoner’s dilemma: Apps for Ipads

@ Today, universality and connectivity of the Web are threatened by
closed Internet applications or “apps” that are designed to be
proprietary, like those on devices such as iPads or iPhones and, to
a lesser extent, on web sites like Facebook.

@ This situation is like a prisoner’s dilemma.
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Prisoner’s dilemma Prisoner’s dilemma

Another example of prisoner’s dilemma: Apps for Ipads Another example of prisoner’s dilemma: Apps for Ipads
@ Today, universality and connectivity of the Web are threatened by @ Today, universality and connectivity of the Web are threatened by
closed Internet applications or “apps” that are designed to be closed Internet applications or “apps” that are designed to be
proprietary, like those on devices such as iPads or iPhones and, to proprietary, like those on devices such as iPads or iPhones and, to
a lesser extent, on web sites like Facebook. a lesser extent, on web sites like Facebook.
@ This situation is like a prisoner’s dilemma. @ This situation is like a prisoner’s dilemma.
@ There is a clear benefit to universality and connectivity. @ There is a clear benefit to universality and connectivity.

@ However, individual corporations stand to benefit if they can rig the
game towards proprietary solutions (i.e. screw their buddy).

@ If that happens, it will hurt consumers and threatens free enterprise
and innovation.
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Prisoner’s dilemma

Equilibrium and efficiency

Another example of prisoner’s dilemma: Apps for Ipads

@ Today, universality and connectivity of the Web are threatened by
closed Internet applications or “apps” that are designed to be @ Prisoner’s dilemma represents the classic conflict between:
proprietary, like those on devices such as iPads or iPhones and, to
a lesser extent, on web sites like Facebook.

@ This situation is like a prisoner’s dilemma.
@ There is a clear benefit to universality and connectivity.

@ However, individual corporations stand to benefit if they can rig the
game towards proprietary solutions (i.e. screw their buddy).
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Equilibrium and efficiency Equilibrium and efficiency

@ Prisoner’s dilemma represents the classic conflict between: @ Prisoner’s dilemma represents the classic conflict between:

» individual incentives of players » individual incentives of players
» joint payoff maximization

@ In the equilibrium of a game, the total payoff is typically not
maximized.
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Equilibrium and efficiency Equilibrium and efficiency

@ Prisoner’s dilemma represents the classic conflict between: @ Prisoner’s dilemma represents the classic conflict between:
» individual incentives of players » individual incentives of players
» joint payoff maximization » joint payoff maximization

@ In the equilibrium of a game, the total payoff is typically not
maximized.

@ In this sense, equilibria are typically “inefficient for players”
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Equilibrium and efficiency Climate Change: Stern Report (2006)

@ Prisoner’s dilemma represents the classic conflict between: .
P To go to the representation of the game need to make some

» individual incentives of players assumptions:
» joint payoff maximization

: . 0 :
@ In the equilibrium of a game, the total payoff is typically not ® if both countries pay 2 % of GDPF, no damage on climate

maximized.
@ if only one does, damage is 1.5 % of GDP

@ In this sense, equilibria are typically “inefficient for players”
g ypicaty Pay @ if none pay, damage is 3 %

@ Examples: pricing by firms, international negotiations, arms races
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Climate Change: Stern Report (2006) Climate Negotiations
EU
Cooperate Not coop

Coop

-2,-2 -3.5,-1.5
uUs

Not coop

-1.5,-35 |-3,-3
@ Estimates from Stern 2006 report: @ Is there any strictly dominated strategy?

» 4 degrees increase, the damage would be around 3% of GDP
» 8 degrees increase, damage estimated between 11 to 20 %

@ Estimates of costs: 1 to 2 % of GDP to limit the riseto 2 — 3
degrees.
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Climate Negotiations Climate Negotiations: More Dramatic Effects

EU
e s In 2013, Stern declared to The Guardian: “I got it wrong on climate
change — it’s far, far worse”
Coop
Do A5ele5
s @ if both countries pay 2 % of GDP, no damage on climate
Nebwooe -15,-3.5 |-3,-3 @ if only one does, damage is 6 % of GDP

@ if none pay, damage is 12 %

@ |s there any strictly dominated strategy?
@ Yes! “Cooperate” is strictly dominated by “Not cooperate”.
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Climate Negotiations Climate Negotiations: More Dramatic Effects
EU
EU

Cooperate Not coop Coop Not coop

Coop Coop 2,2 -8,-6
Dl Hi5p=l5 s

Us
Not coop -6,-8 -12,-12

Not coop

o5, 55 | 5,48

@ Is there any strictly dominated strategy?
@ |s there any strictly dominated strategy?

@ Yes! “Cooperate” is strictly dominated by “Not cooperate”.
» Here, “Not cooperate” is a strictly dominant strategy.
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Climate Negotiations: More Dramatic Effects

Simultaneous games

Ouitline
EU
Coop Not coop © Elimination of dominated strategies
Coop 22 8,6
us
Not coop 6,8 -12,-12

@ [s there any strictly dominated strategy?
@ Yes! “Not cooperate” is strictly dominated by “Cooperate”
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Climate Negotiations: More Dramatic Effects lterated strict dominance
EU @ It may happen that there is no dominant strategy but stil there are
Coop Not coop dominated strategies.
Coop 2,2 -8,-6
- L M R

u (2,2) (1,1) (4,0)

Not coop -6,-8 -12,-12 D (1 ’ 2) ( ’ 1 ) (3' 5)

@ [s there any strictly dominated strategy?
@ Yes! “Not cooperate” is strictly dominated by “Cooperate”
» Here, “Cooperate” is a strictly dominant strategy.
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Iterated strict dominance lterated strict dominance

@ It may happen that there is no dominant strategy but stil there are @ It may happen that there is no dominant strategy but stil there are
dominated strategies. dominated strategies.
@ Consider the following game: @ Consider the following game:
L M R L M R
u (2,2) (1,1) (4,0) u (2,2) (1,1) (4,0)
D (1,2) (4,1) (3,5 D (1,2) (4,1) (3,5)

@ |s there any dominant strategy?

» No.
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lterated strict dominance lterated strict dominance
@ It may happen that there is no dominant strategy but stil there are @ It may happen that there is no dominant strategy but stil there are
dominated strategies. dominated strategies.
@ Consider the following game: @ Consider the following game:
L M R L M R
Uu (2,2) (1,1) (4,0) u (2,2) (1,1) (4,0)
D (1,2) (4,1) (3,5 D (1,2) (4,1) (3,5)
@ |s there any dominant strategy? @ Is there any dominant strategy?
» No.

@ |s there any strictly dominated strategy?
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Iterated strict dominance lterated strict dominance

@ It may happen that there is no dominant strategy but stil there are
dominated strategies. Iterated strict dominance:

@ Consider the following game:
Column M dominated by column L: eliminate M
L M R
u (2,2) (1,1) (4,
D (1,2) (4,1) (3,

Oi Once M eliminated, row D dominated by row U: eliminate D
5

@ |s there any dominant strategy?
» No.

@ |s there any strictly dominated strategy?
> Yes: M.
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Iterated strict dominance lterated strict dominance
Iterated strict dominance: Iterated strict dominance:
Column M dominated by column L: eliminate M Column M dominated by column L: eliminate M

Once M eliminated, row D dominated by row U: eliminate D

Once M and D eliminated, column R dominated
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Iterated strict dominance

Iterated strict dominance:

Simultaneous games

Outline

Column M dominated by column L: eliminate M e Experimental evidence: Iterated strict dominance

Once M eliminated, row D dominated by row U: eliminate D

Once M and D eliminated, column R dominated

@ Iterated strict dominance leads to outcome (U,L)
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lterated strict dominance Nagel (AER, 1995): Testing the Beauty Contest

@ Groups of 15 -18 subjects each

@ The same group played for four periods
@ lterated strict dominance applied to the beauty contest.

@ After each round the response cards were collected
@ What is the unique equilibrium?

@ All chosen numbers, the mean, and half the mean were announced
@ Prediction correct? Even if repeated?

@ The prize to the winner of each round was 20 DM (about $13)

@ After four rounds, each player received the sum of his gains of each
period
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Nagel (AER, 1995): Testing the Beauty Contest Nagel (AER, 1995): Testing the Beauty Contest

First-Period Choices Choices from periods 2 to 3
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: median 17
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FIGURE 1. CHOICES IN THE FIRST PERIOD DIGRRIN.28conC.ER

B) TRANSITION FROM SECOND TO THIRD PERIOD!

@ 6 % of the subjects chose numbers greater than 50
@ and 8 % chose 50.
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Nagel (AER, 1995): Testing the Beauty Contest Nagel (AER, 1995): Testing the Beauty Contest

Choices from periods 1 to 2 Choices from periods 3 to 4
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A.
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Choices in First Period
A) TRANSITION FROM FIRST TO SECOND PERIOD 0

0 10 20 30 40 50 60 70 80 90 100
Choices in Third Penod
@ A plot under the bisecting line indicates that the subject chose a C) TRANSITION FROM THIRD T0 FOURTH PERIOD

lower number in period 2 than in period 1
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Nagel (AER, 1995): Testing the Beauty Contest

Conclusion

Nagel (AER, 1995): Testing the Beauty Contest

Conclusion

@ The process is driven by iterative, naive best replies rather than by
an elimination of dominated strategies.
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Nagel (AER, 1995): Testing the Beauty Contest

@ The process is driven by iterative, naive best replies rather than by
an elimination of dominated strategies.

@ The process of iteration is finite and not infinite.
@ There is a moving target, which approaches zero.
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Nagel (AER, 1995): Testing the Beauty Contest

Conclusion

@ The process is driven by iterative, naive best replies rather than by
an elimination of dominated strategies.

@ The process of iteration is finite and not infinite.
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Conclusion

@ The process is driven by iterative, naive best replies rather than by
an elimination of dominated strategies.

@ The process of iteration is finite and not infinite.
@ There is a moving target, which approaches zero.

@ Over time the chosen numbers approach the equilibrium or
converge to it.
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Conclusion

Nagel (AER, 1995): Testing the Beauty Contest

Conclusion

@ The process is driven by iterative, naive best replies rather than by
an elimination of dominated strategies.

@ The process of iteration is finite and not infinite.
@ There is a moving target, which approaches zero.

@ Over time the chosen numbers approach the equilibrium or
converge to it.

@ (Many) people don’t play equilibrium because they are confused.
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Nagel (AER, 1995): Testing the Beauty Contest

[Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory

@ The process is driven by iterative, naive best replies rather than by
an elimination of dominated strategies.

@ The process of iteration is finite and not infinite.
@ There is a moving target, which approaches zero.

@ Over time the chosen numbers approach the equilibrium or
converge to it.

@ (Many) people don’t play equilibrium because they are confused.

@ (Many) people don’t play equilibrium because doing so (here,
choosing 0) doesn’t win;

» rather they are cleverly anticipating the behavior of others, with noise.
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Simultaneous games
Outline

Conclusion

@ The process is driven by iterative, naive best replies rather than by
an elimination of dominated strategies.

@ The process of iteration is finite and not infinite.
@ There is a moving target, which approaches zero.

@ Over time the chosen numbers approach the equilibrium or
converge to it.

@ (Many) people don’t play equilibrium because they are confused.

@ (Many) people don’t play equilibrium because doing so (here,
choosing 0) doesn’t win;
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Nash equilibrium Nash equilibrium

Location game Location game

@ You and a competitor are to set up an ice cream parlour on the @ You and a competitor are to set up an ice cream parlour on the
beach beach

@ Once built, the location of the parlour is fixed for the season

@ People are evenly distributed over the one kilometer long beach,
and buy from the nearest vendor
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Nash equilibrium Nash equilibrium
Location game Location game

@ You and a competitor are to set up an ice cream parlour on the @ You and a competitor are to set up an ice cream parlour on the
beach beach
@ Once built, the location of the parlour is fixed for the season @ Once built, the location of the parlour is fixed for the season

@ People are evenly distributed over the one kilometer long beach,
and buy from the nearest vendor

@ Ice creams are sold at fixed price
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Nash equilibrium Nash equilibrium
Location game Location game

@ You and a competitor are to set up an ice cream parlour on the
beach

@ Once built, the location of the parlour is fixed for the season

@ People are evenly distributed over the one kilometer long beach,
and buy from the nearest vendor

@ Ice creams are sold at fixed price

@ You decide simultaneously on your location )
@ Do you have a dominant strategy?

@ Where do you go?
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Nash equilibrium Nash equilibrium
Location game Location game
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@ Do you have a dominant strategy?
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Nash equilibrium Nash equilibrium

Location game Location game
@ To solve this game you need some belief about what the other @ To solve this game you need some belief about what the other
player will do player will do

@ What you do depends on what you think he will do

@ What you do depends on what you think he thinks you will do
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Nash equilibrium Nash equilibrium
Location game Location game
@ To solve this game you need some belief about what the other @ To solve this game you need some belief about what the other
player will do player will do
@ What you do depends on what you think he will do @ What you do depends on what you think he will do

@ What you do depends on what you think he thinks you will do

@ What you do depends on what you think he thinks you think he will
do
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Nash equilibrium

Location game

@ To solve this game you need some belief about what the other
player will do

@ What you do depends on what you think he will do
@ What you do depends on what you think he thinks you will do

@ What you do depends on what you think he thinks you think he will
do
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Nash equilibrium

Nash equilibrium

Definition

Definition (Informal)

A Nash equilibrium is an outcome where given what the other is
doing, neither wants to change his own move.

Said differently, a Nash equilibrium is a strategy profile where :
- there is no unilateral profitable deviation; or

- each player’s action is the best response to that of the other.
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Nash equilibrium
Definition

Location game

@ To solve this game you need some belief about what the other
player will do

@ What you do depends on what you think he will do
@ What you do depends on what you think he thinks you will do

@ What you do depends on what you think he thinks you think he will
do

@ Need equilibrium concept to solve these iterations

Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory
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Definition (Formal)

A strategy profile (s7, s3, .., s;) is a Nash equilibrium if for every / and
every s, € S; we have u;(s?,s*;) > ui(s],s*,).

@ Think of two players. Denote the Nash equilibrium {s7, s3}. Nash
equilibrium means:
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Nash equilibrium
Definition

Definition (Formal)

A strategy profile (s7, s3, .., s;) is a Nash equilibrium if for every i and
every s; € S; we have u;(s?,s*,) > ui(s],s*,).

@ Think of two players. Denote the Nash equilibrium {s7, s3}. Nash
equilibrium means:

> If player 1 plays s}, best player 2 can do is play s

Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 53/133

Nash equilibrium
Definition

Nash equilibrium

Best responses

@ The best response to other player’s strategy is the strategy for you
that maximizes your payoff given what the others play
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Nash equilibrium

Definition (Formal)

A strategy profile (s7, s3, .., s;) is a Nash equilibrium if for every i and
every s; € S; we have u;(s?,s*,) > ui(s],s*,).

@ Think of two players. Denote the Nash equilibrium {s7, s3}. Nash
equilibrium means:

> If player 1 plays s}, best player 2 can do is play s

» If player 2 plays s, best player 1 can do is play sj
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Best responses

@ The best response to other player’s strategy is the strategy for you
that maximizes your payoff given what the others play

@ The best response to a strategy s_; by the opponents is the set of
strategies that maximize your payoffs given that the others plays s_;
(maximizes u;(s], s_;))
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Nash equilibrium Nash equilibrium

Best responses Coming back to Prisoner’s Dilemma

Player 2
@ The best response to other player’s strategy is the strategy for you Denounce Stays Silent
that maximizes your payoff given what the others play Denounce (-10,-10) (-1,-25)
Player 1
e Stays Silent (-25,-1) (-3,-3)

@ The best response to a strategy s_; by the opponents is the set of
strategies that maximize your payoffs given that the others plays s_; BR1(P2 plays « Denounce »)=
(maximizes u;(s], s_;))

@ Nash equilibrium as we defined it is a fixed point of best responses
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Nash equilibrium Nash equilibrium
Coming back to Prisoner’s Dilemma Coming back to Prisoner’s Dilemma

Player 2 Player 2
Denounce Stays Silent Denounce Stays Silent
_ Denounce (-10,-10) (-1,-25) Denounce (-10,-10) (-1,-25)
Player 1 . Player 1
Stays Silent (-25,-1) (-3,-3) Stays Silent (-25,-1) (-3,-3)

BR1(P2 plays « Denounce »)={Denounce};
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Nash equilibrium Nash equilibrium

Coming back to Prisoner’s Dilemma Coming back to Prisoner’s Dilemma

Player 2 Player 2
Denounce Stays Silent Denounce Stays Silent
Denounce (-10,-10) (-1,-25) Denounce (-10,-10) (-1,-25)
Player 1 Player 1 _
Stays Silent (-25,-1) (-3,-3) Stays Silent (-25,-1) (-3,-3)
BR1(P2 plays « Denounce »)={Denounce}; BR1(P2 plays « Denounce »)={Denounce};
BR1(P2 plays « Stays Silent »)= BR1(P2 plays « Stays Silent »)={Denounce};
Similarly:

BR2(P1 plays « Denounce »)={Denounce};
BR2(P1 plays « Stays Silent »)={Denounce}.
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Nash equilibrium Nash equilibrium
Coming back to Prisoner’s Dilemma Coming back to Prisoner’s Dilemma

Player 2 Player 2
Denounce Stays Silent Denounce Stays Silent
Denounce (-10,-10) (-1,-25) Denounce (-10,-10) (-1,-25)
Player 1 Player 1
Stays Silent (-25,-1) (-3,-3) Stays Silent (-25,-1) (-3,-3)
BR1(P2 plays « Denounce »)={Denounce}; The unique Nash equilibrium is:

BR1(P2 plays « Stays Silent »)={Denounce};
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Nash equilibrium

Coming back to Prisoner’s Dilemma

Player 2
Denounce Stays Silent
Dencunce (-10,-10)() (-1,-25)
Player 1
Stays Silent (-25,-1) (-3,-3)

The unique Nash equilibrium is: {Denounce, Denounce}.
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Nash equilibrium

Nash equilibrium

Back to the beach location game

@ |s (0,1) a Nash equilibrium (i.e., both position themselves at the
extremes of the beach)?

@ |s (1/4,3/4) a Nash equilibrium?
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Nash equilibrium

Back to the beach location game

@ |Is (0,1) a Nash equilibrium (i.e., both position themselves at the
extremes of the beach)?
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Back to the beach location game

@ |s (0,1) a Nash equilibrium (i.e., both position themselves at the
extremes of the beach)?

@ |s (1/4,3/4) a Nash equilibrium?
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Nash equilibrium

Fashion pricing

Nash equilibrium
Fashion pricing

@ You are working for Armani
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Nash equilibrium
Fashion pricing

@ You are working for Armani
@ Main competitor is Ralph Lauren, with shop next door

@ [tis the end of the season, so unsold clothes are worthless
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Nash equilibrium
Fashion pricing

@ You are working for Armani

@ You are working for Armani

@ Main competitor is Ralph Lauren, with shop next door @ Main competitor is Ralph Lauren, with shop next door

@ [tis the end of the season, so unsold clothes are worthless

@ Should you have sale or keep prices at normal high level?
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Nash equilibrium Nash equilibrium

Fashion pricing Fashion pricing
@ You are working for Armani @ You are working for Armani
@ Main competitor is Ralph Lauren, with shop next door @ Main competitor is Ralph Lauren, with shop next door
@ |t is the end of the season, so unsold clothes are worthless @ [tis the end of the season, so unsold clothes are worthless
@ Should you have sale or keep prices at normal high level? @ Should you have sale or keep prices at normal high level?

RL has similar dilemma..

@ RL has similar dilemma..

If only one shop has sale, that shop attracts some of the other
shop’s customers and possibly some new customers

@ You and RL make independent and simultaneous decisions
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Nash equilibrium Nash equilibrium
Fashion pricing Fashion pricing

@ You are working for Armani

RL
@ Main competitor is Ralph Lauren, with shop next door
Sale No sale

@ |t is the end of the season, so unsold clothes are worthless

Sal
@ Should you have sale or keep prices at normal high level? o 4040 20550
@ RL has similar dilemma.. omAn

No sale 30,70 60, 60
@ If only one shop has sale, that shop attracts some of the other

shop’s customers and possibly some new customers
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Nash equilibrium

Fashion pricing

Nash equilibrium
Fashion pricing

Sale

Armani

No sale

@ BRA™aN (Sale) = {Sale}

Jérome MATHIS (LEDa - Univ. Paris-Dauphin

Nash equilibrium
Fashion pricing

RL
Sale No sale
40* , 40* 50, 30
30, 70* 60* , 60

Game Theory

Chap.1 Simultaneous games

66 /133

No sale

50,30

Sale
Sale 40% | 40%
Armani
No sale 30, 70*

60* , 60

@ BRA™an(Sale) = {Sale}
o BRRL(Sale) = {Sale}

@ There is a unique Nash equilibrium: {Sale, Sale}

[Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory

Nash equilibrium
Dominant strategy
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Sale

Armani

No sale

@ BRA™aN (Sale) = {Sale}
e BRRL(Sale) = {Sale}

RL
Sale No sale
40* , 40* 50, 30
30, 70* 60* , 60

66 /133

@ Fashion pricing game is also solvable by iterated deletion of

dominated strategy.

Property

If a game is solvable by iterated deletion of dominated strategies, then

the solution is a Nash equilibrium.

Jérome MATHIS (LEDa - Univ. Paris-Dauphin

Game Theory

Chap.1 Simultaneous games
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Nash equilibrium Nash equilibrium

Interpretation

Dominant strategy

@ Fashion pricing game is also solvable by iterated deletion of
dominated strategy. o
@ Some justifications of the concept:

Property
If a game is solvable by iterated deletion of dominated strategies, then
the solution is a Nash equilibrium.
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Nash equilibrium

Nash equilibrium
Interpretation

Dominant strategy

@ Fashion pricing game is also solvable by iterated deletion of
dominated strategy. o
@ Some justifications of the concept:

» Introspection: correct conjectures about opponent’s play

Property
If a game is solvable by iterated deletion of dominated strategies, then
the solution is a Nash equilibrium.

Property
If all players have a dominant strategy, then the only Nash Equilibrium
is one where all players play their dominant strategy.
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Simultaneous games
Outline

Nash equilibrium

Interpretation

@ Some justifications of the concept:

» Introspection: correct conjectures about opponent’s play e
More strategies

» Self enforcing agreement: if players communicate and agree initially
they will not deviate

Chap.1 Simultaneous games 69/133
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More strategies

Nash equilibrium

Interpretation

e Some justifications of the concept: @ Up till now only games with 2 players and 2 choices

» Introspection: correct conjectures about opponent’s play

» Self enforcing agreement: if players communicate and agree initially
they will not deviate

» Result of learning: situation that arises repeatedly
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More strategies More strategies

@ Up till now only games with 2 players and 2 choices @ Up till now only games with 2 players and 2 choices
@ We examine now: @ We examine now:

» Games with more choices (but finite number)

» Games with continuous strategy space
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More strategies More strategies: 3x3
COLUMN

@ Up till now only games with 2 players and 2 choices

ROW

@ We examine now:

» Games with more choices (but finite number) o lterated strict dominance:
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More strategies: 3x3 More strategies: 3x3

COLUMN COLUMN

ROW ROW
@ |terated strict dominance: @ |terated strict dominance:
“‘Down” is a strictly dominant strategy: eliminate “Up” and “Straight” “‘Down” is a strictly dominant strategy: eliminate “Up” and “Straight”

Once “Up” and “Straight” are eliminated, “Middle” is a dominant
strategy: eliminate “Left” and “Right”.

@ lterated strict dominance leads to outcome (Down,Middle)
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More strategies: 3x3 More strategies: 4x3
COLUMN

COLUMN

ROW

@ lterated strict dominance:

“‘Down” is a strictly dominant strategy: eliminate “Up” and “Straight” @ No strategy can be eliminated (as long as we restrict to pure

Once “Up” and “Straight” are eliminated, “Middle” is a dominant dominance).
strategy: eliminate “Left” and “Right”.
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More strategies: 4x3

COLUMN

@ No strategy can be eliminated (as long as we restrict to pure
dominance).

@ We shall see later on how to solve this game (use of mixed
strategies).
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More strategies: infinite number
Competition in an oligopoly

More strategies: infinite number

Competition in an oligopoly

@ Two firms i and j compete in quantity they produce (called Cournot
competition).

@ We consider here a situation where they make their choice
simultaneously
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More strategies: infinite number
Competition in an oligopoly

@ Two firms i and j compete in quantity they produce (called Cournot
competition).

@ Two firms i and j compete in quantity they produce (called Cournot
competition).

@ We consider here a situation where they make their choice
simultaneously

@ Strategy of player i is quantity q;
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More strategies: infinite number More strategies: infinite number

Competition in an oligopoly Competition in an oligopoly: Objective of firms

@ Two firms i and j compete in quantity they produce (called Cournot

I @ Each unit of good is of course costly to produce
competition).

@ We consider here a situation where they make their choice
simultaneously

@ Strategy of player / is quantity q;

@ Given the choice of quantities produced (g;, g;), there is a resulting
price that emerges in the market: what we call a demand function
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More strategies: infinite number More strategies: infinite number
Competition in an oligopoly Competition in an oligopoly: Objective of firms

@ Two firms i and j compete in quantity they produce (called Cournot

I @ Each unit of good is of course costly to produce
competition).

@ Here we assume that each unit costs ¢ to produce so that the total

@ We consider here a situation where they make their choice cost of production for firm i is given by C(g;) = cq:

simultaneously
@ Strategy of player i is quantity q;

@ Given the choice of quantities produced (g;, g;), there is a resulting
price that emerges in the market: what we call a demand function

@ In this case we consider a very simple demand function: price on
the market is givenby P =1 —q; — q;
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More strategies: infinite number More strategies: infinite number

Competition in an oligopoly: Objective of firms Competition in an oligopoly: Nash equilibrium as solution

@ Each unit of good is of course costly to produce

@ Here we assume that each unit costs ¢ to produce so that the total @ In practice you don’t know for sure what the other one will do
cost of production for firm i is given by C(q;) = cq;

@ If player i knows what player j does, choice is easy, it just
maximizes profits, i.e. price x quantity - cost:
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More strategies: infinite number More strategies: infinite number
Competition in an oligopoly: Objective of firms Competition in an oligopoly: Nash equilibrium as solution

@ Each unit of good is of course costly to produce

@ Here we assume that each unit costs ¢ to produce so that the total @ In practice you don’t know for sure what the other one will do
cost of production for firm i is given by C(q;) = cq;
@ Depends on belief of what the others will do

@ If player i knows what player j does, choice is easy, it just
maximizes profits, i.e. price x quantity - cost:

» In other words, firm /, if firm j produces g;, chooses q; to maximize

Pg; — C(q;) = (1 —qi —qj)q; — cq;
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More strategies: infinite number

More strategies: infinite number

Competition in an oligopoly: Nash equilibrium as solution

@ In practice you don’t know for sure what the other one will do
@ Depends on belief of what the others will do

@ No obvious choice: i.e no dominant strategy
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Competition in an oligopoly: Best responses

@ To determine the Nash equilibrium, consider firm /. It takes the
quantity of firm j as given and maximizes her own profits by
choosing optimally gq;.
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More strategies: infinite number

Competition in an oligopoly: Nash equilibrium as solution

@ In practice you don’t know for sure what the other one will do
@ Depends on belief of what the others will do
@ No obvious choice: i.e no dominant strategy

@ So we look for the Nash Equilibrium
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Competition in an oligopoly: Best responses

@ To determine the Nash equilibrium, consider firm i. It takes the
quantity of firm j as given and maximizes her own profits by
choosing optimally gq;.

@ Problem facing player i, given that opponent produces g; is to
maximize

I1(q;) = qi[1— (g + ) —¢] = —qF + (1 —q; —¢)
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More strategies: infinite number

More strategies: infinite number

Competition in an oligopoly: Best responses

@ To determine the Nash equilibrium, consider firm i. It takes the

quantity of firm j as given and maximizes her own profits by
choosing optimally g;.

@ Problem facing player i, given that opponent produces g; is to
maximize

I1(g;) = qi[1— (gi + ) — ] = —a7 + (1 — g~ ¢)

@ Reminder: to find a maximum, equalize the derivative to zero
H’(q,-) =0
—2gi+(1—-¢q—c) = 0
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More strategies: infinite number

Competition in an oligopoly: Nash equilibrium

@ A Nash equilibrium is a pair (q;, g;) such that g; is a best response
to g; while g; is itself a best response to g;.
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More strategies: infinite number

Competition in an oligopoly: Best responses

@ To determine the Nash equilibrium, consider firm i. It takes the

quantity of firm j as given and maximizes her own profits by
choosing optimally gq;.

@ Problem facing player i, given that opponent produces g; is to
maximize

I1(g;) = qi[1— (qi + ) —¢] = —a7 +g;(1 — g~ ¢)
@ Reminder: to find a maximum, equalize the derivative to zero
H’(q,-) =0
—2gi+(1—-¢q—c) = 0
@ So best response is
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Competition in an oligopoly: Nash equilibrium

@ A Nash equilibrium is a pair (g;, g;) such that g; is a best response
to g; while g; is itself a best response to g;.

> qi=BR(q) =3¢~ § and q; = BR(q;) = 3¢ -
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More strategies: infinite number

Competition in an oligopoly: Nash equilibrium

More strategies: infinite number
Competition in an oligopoly: Nash equilibrium

@ A Nash equilibrium is a pair (q;, g;) such that g; is a best response

to g; while g; is itself a best response to g;.

> qi=BR(q) =3¢~ Y and q; = BR(q)) = 3¢ - %

» Replace and get:
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More strategies: infinite number

@ A Nash equilibrium is a pair (q;, g;) such that g; is a best response

to g; while g; is itself a best response to g;.

> g =BR(q) =3¢~ Y and q; = BR(q;) = 3¢ - %
» Replace and get:

2 2
» check yourself that the unique solution is
=g =(1-¢)/3

[Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 771133

More strategies: infinite number

Competition in an oligopoly: Nash equilibrium

@ A Nash equilibrium is a pair (q;, g;) such that g; is a best response

to g; while g; is itself a best response to g;.

> qi=BR(q) =3¢~ Y and q; = BR(q)) = 3¢ -
» Replace and get:

2 2
» check yourself that the unique solution is
q=gq=(1-c)/3
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Competition in an oligopoly: Nash equilibrium

@ A Nash equilibrium is a pair (g;, g;) such that g; is a best response

to g; while g; is itself a best response to g;.

> qi=BR(q) =3¢~ § and q; = BR(q;) = 3¢ -
» Replace and get:

2 2
» check yourself that the unique solution is
=g =(1-¢)/3

The unique Nash equilibrium is for each firm to choose quantity

(1-¢)

9="3"
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Multiple equilibria
A GAME OF CHICKEN

Simultaneous games

Outline

...SWERVES, ...DRIVES
IF DRIVER #1... THEN... STRAIGHT, THEN...
...driver #2 wins
...SWERVES, i "
THEN... -itsatie. and driver #1
loses.
. e -.DRIVES ..driver #1 wins ...both drivers
@ Muttiple equilibria STRAIGHT, and driver #2 erash.
THEN... —— loses.
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Multiple equilibria Multiple equilibria

There may be multiple Nash equilibria.

Example, the game of chicken (aka hawk-dove) .

Player 2
Straight Swerve
_ Straight (Crash, Crash) (Win, Lase)
Player 1
Swerve (Lose, Win) (Tie, Tie)
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Multiple equilibria

There may be multiple Nash equilibria.

Example, the game of chicken (aka hawk-dove) .

Multiple equilibria

There may be multiple Nash equilibria.

Example, the game of chicken (aka hawk-dove) .

Player 2 Player 2
Straight Swerve Straight Swerve
Straight (Crash, Crash) (Win, Lose) _ Straight (Crash, Crash) (Win, Lose)
Player 1 Player 1 - —
Swerve (Lose, Win) (Tie, Tie) Swerve (Lose, Win) (Tie, Tie)

BR1(P2 plays « Straight »)= BR1(P2 plays « Straight »)={Swerve};

BR1(P2 plays « Swerve »)=
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Multiple equilibria Multiple equilibria

There may be multiple Nash equilibria.

Example, the game of chicken (aka hawk-dove) .

Player 2
Straight Swerve
Straight (Crash, Crash) (Win, Lose)
Player 1
Swerve (Lose, Win) (Tie, Tie)

BR1(P2 plays « Straight »)={Swerve};
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There may be multiple Nash equilibria.

Example, the game of chicken (aka hawk-dove) .

Player 2
Straight Swerve
Straight (Crash, Crash) (Win, Lose)
Player 1
Swerve (Lose, Win) (Tie, Tie)

BR1(P2 plays « Straight »)={Swerve};
BR1(P2 plays « Swerve »)={Straight};
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Multiple equilibria Multiple equilibria

There may be multiple Nash equilibria.

Example, the game of chicken (aka hawk-dove) .

Straight Swerve
Straight (Crash, Crash) (Win, Lose)
Swerve (Lose, Win) (Tie, Tie)
BR1(P2 plays « Straight »)={Swerve};
BR1(P2 plays « Swerve »)={Straight};
Nash equilibria:
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Multiple equilibria

There may be multiple Nash equilibria.

Example, the game of chicken (aka hawk-dove) .

Straight Swerve
Straight (Crash, Crash) (Win, Lose) @
Swerve (Lose, Win) @ (Tie, Tie)

BR1(P2 plays « Straight »)={Swerve};
BR1(P2 plays « Swerve »)={Straight}; ‘ .
Nash equilibria: {(Straight, Swerve); (Swerve, Straight)} B

GAME & CHICKEN
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Multiple equilibria Simultaneous games

Outline

Wha is gaig to abandon o Focal Point
theiie RED lres fivst?
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Multiple equilibria

Prisoner’s dilemma: playing with your cousin

Focal Point

@ How to select one equilibrium from multiple equilibria?

Denounce Stays Silent
Denounce (-10,-10) (-6,-25)
Stays Silent (-25,-6) (-3,-3)

@ What is the set of Nash equilibrium?
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Focal Point Focal Point

@ How to select one equilibrium from multiple equilibria? @ How to select one equilibrium from multiple equilibria?
@ Usually, the selection proceeds from social norms. @ Usually, the selection proceeds from social norms.

@ On which side of the road to drive?
» Dominant strategy: on the side used by other drivers.
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Focal Point Focal Point

@ How to select one equilibrium from multiple equilibria? @ How to select one equilibrium from multiple equilibria?
@ Usually, the selection proceeds from social norms. @ Usually, the selection proceeds from social norms.
@ On which side of the road to drive? @ On which side of the road to drive?

» Dominant strategy: on the side used by other drivers.

@ Which side to choose? No side is better than other.
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Focal Point Focal Point

@ How to select one equilibrium from multiple equilibria?
. . @ Choosing a date.
@ Usually, the selection proceeds from social norms. . . .
@ Choosing a place to meet next week in Paris.
@ On which side of the road to drive?
» Dominant strategy: on the side used by other drivers.
@ Which side to choose? No side is better than other.

» UK, Australia, Japan: left-side.

Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 93/133 [Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 94 /133

Focal Point Focal Point

@ Choosing a date. @ Choosing a date.
@ Choosing a place to meet next week in Paris.
@ The weather can modify the rdv location.
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Focal Point

Focal Point

Bank run from depositors

Bank run is a move from one
equilibrium to another.

@ Choosing a date.

@ Choosing a place to meet next week in Paris. Self-fulfilling prophecy.

@ The weather can modify the rdv location.

@ Sunspot can make people moving from one equilibrium to another.

> 'y

Northern Rock bank run on September 2007.
People queuing outside a branch in London to withdraw
their savings due to fallout from the subprime crisis.
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Focal Point
Bank run from depositors

Focal Point

@ Choosing a date.

@ Choosing a place to meet next week in Paris.

@ The weather can modify the rdv location.

@ Sunspot can make people moving from one equilibrium to another.
@ Extrinsic fluctuations can cause financial crises.

On March 21, 2013, people queue at an ATM outside a closed Laiki Bank branch in capital Nicosia, Cyprus.

"There are rumours that Laiki Bank (the Greek name for the Popular Bank) will never open again. | want to
take out as much as | can,” said a depositor.
“It's all about cash now. Only a gambler will take cheques in this situation,” said a depositor.
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Focal Point Focal Point
Bank run from depositors Bank run from depositors

Long |ines at Russia's ATMs as citizens rush to withdraw cash amld esca|ating EU Des policiers gardent I'entrée d'une agence de la banque russe Sberbank devant laquelle des clients font la queug pour retirer leurs avoirs,
. le 25 février 2022 a Prague ( Michal Cizek / AFP )
sanctions on 27 Feb 2022
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Focal Point Focal Point
Bank run from depositors Bank run from depositors

RUBLE TROUBLE

A run on Russian banks and creeping Western sanctions has seen the ruble crash
$0.0130846 Russia begins Ukraine invasion  Putin nuke threat

\ /

$0.011299

$0.010399

$0.00949857 S @@~

T I ‘
O People wait out5|de the Silicon Valley Bank headquarters in Santa
n Feb 2 Feb B Feb 24 Feb 26Feb  27Feb2022 Clara, California, to withdraw funds after the federal government

intervened upon the collapse of the bank. Photograph: Brittany Hosea
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Focal Point Experimental evidence: Nash equilibrium

Bank run from bondholder Ensminger (Oxford University Press, 2004): Public good game

@ Ensminger (Oxford University Press, 2004): Testing Nash
equilibrium in Public good game

On March 2008, a bank run began on the | Open: High: Low: Close:
long-term investments by selling short-maturity

# l.‘
Credit officers of rival firms began to say that | ,}- Hul*i” r
Stearns's capital base of $17 billion had |
money (the first time since the Great

Bank run from bondholders
securities and banking firm Bear Stearns. The
non deposit-taking bank had financed huge Bear Stearns
bonds, making it vulnerable to panic on the } lﬁl |T”1 =
part of its bondholders. f HI I

1 10
Bear Stearns would not be able to make good ,J*IIM l
on its obligations. Within two days, Bear
dwindled to $2 billion in cash. By the next
morning, the Fed decided to lend Bear Stearns Final bid' $2 \l
Depression that it had lent to a nonbank).

Stocks sank, and that day JPMorgan Chase began to buy Bear Stearns as part of a government-
sponsored bailout.
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Simultaneous games Experimental evidence: Nash equilibrium
Outline Ensminger (Oxford University Press, 2004): Public good game

@ Ensminger (Oxford University Press, 2004): Testing Nash
equilibrium in Public good game

@ N players are grouped and each given an amount X (10 for
example).

e Experimental evidence: Nash equilibrium
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Experimental evidence: Nash equilibrium

Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ Ensminger (Oxford University Press, 2004): Testing Nash
equilibrium in Public good game

@ N players are grouped and each given an amount X (10 for
example).

@ Each player simultaneously decides how much to give, between 0
and X, to the public good.
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Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ Ensminger (Oxford University Press, 2004): Testing Nash
equilibrium in Public good game

@ N players are grouped and each given an amount X (10 for
example).

@ Each player simultaneously decides how much to give, between O
and X, to the public good.

@ All contributions are made privately in an envelope so that no one
but the experimenter knows the amount of each contribution.

@ The total amount collected is then doubled by the experimenter and
this amount is redistributed equally among everyone.
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Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ Ensminger (Oxford University Press, 2004): Testing Nash
equilibrium in Public good game

@ N players are grouped and each given an amount X (10 for
example).

@ Each player simultaneously decides how much to give, between 0
and X, to the public good.

@ All contributions are made privately in an envelope so that no one
but the experimenter knows the amount of each contribution.
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Ensminger (Oxford University Press, 2004): Public good game

@ Ensminger (Oxford University Press, 2004): Testing Nash
equilibrium in Public good game

@ N players are grouped and each given an amount X (10 for
example).

@ Each player simultaneously decides how much to give, between O
and X, to the public good.

@ All contributions are made privately in an envelope so that no one
but the experimenter knows the amount of each contribution.

@ The total amount collected is then doubled by the experimenter and
this amount is redistributed equally among everyone.

@ For example: N = 4. If you have 10, you give 4 and the others give
20 in total. Total is 24, and each gets 0.5 of that. So you will get
10 -4 4+ 05%x24 = 18.
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Experimental evidence: Nash equilibrium Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game Ensminger (Oxford University Press, 2004): Public good game

@ What is a public good? @ What is a public good?

@ A public good is a good that is both non-excludable and
non-rivalrous

» non-excludable: non-paying consumers cannot be prevented from
accessing it

Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 104 /133 [Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 104 /133

Experimental evidence: Nash equilibrium Experimental evidence: Nash equilibrium
Ensminger (Oxford University Press, 2004): Public good game Ensminger (Oxford University Press, 2004): Public good game
@ What is a public good? @ What is a public good?
@ A public good is a good that is both non-excludable and @ A public good is a good that is both non-excludable and
non-rivalrous non-rivalrous

» non-excludable: non-paying consumers cannot be prevented from
accessing it

* E.g., fish stocks, forest, fresh air, national defense, street lighting ...
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Experimental evidence: Nash equilibrium

Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ What is a public good?

@ A public good is a good that is both non-excludable and
non-rivalrous

» non-excludable: non-paying consumers cannot be prevented from
accessing it

* E.g., fish stocks, forest, fresh air, national defense, street lighting ...

» non-rivalrous: one person’s consumption of the good does not affect
another
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Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ What is a public good?

@ A public good is a good that is both non-excludable and
non-rivalrous

» non-excludable: non-paying consumers cannot be prevented from
accessing it

* E.g., fish stocks, forest, fresh air, national defense, street lighting ...

» non-rivalrous: one person’s consumption of the good does not affect
another

* E.g., cinemas, parks, satellite television, fresh air, national defense

@ Need for public provision because these goods will tend to be
privately under provided
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Ensminger (Oxford University Press, 2004): Public good game

@ What is a public good?

@ A public good is a good that is both non-excludable and
non-rivalrous

» non-excludable: non-paying consumers cannot be prevented from
accessing it

* E.g., fish stocks, forest, fresh air, national defense, street lighting ...

» non-rivalrous: one person’s consumption of the good does not affect
another

* E.g., cinemas, parks, satellite television, fresh air, national defense
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Ensminger (Oxford University Press, 2004): Public good game

Excludable Non-excludable

Common goods

Private goods (Common-pool

Rivalrous food, clothing, cars, resources)
personal electronics fish stocks, timber,
coal
Club goods Public goods

Non-rivalrous

cinemas, private parks,
satellite television

free-to-air television,
air, national defense
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Ensminger (Oxford University Press, 2004): Public good game

@ Ensminger (2004): experiment in small society in Kenya
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Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ Ensminger (2004): experiment in small society in Kenya
@ Players grouped by 4 (anonymously) and given 50 shillings

@ Can choose to keep the amount or contribute part or the whole of it
to a public good
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Ensminger (Oxford University Press, 2004): Public good game

@ Ensminger (2004): experiment in small society in Kenya
@ Players grouped by 4 (anonymously) and given 50 shillings

@ Can choose to keep the amount or contribute part or the whole of it
to a public good

@ Amount contributed doubled by experimenter and divided among
the 4 players: so got back 50 percent of the total
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Ensminger (Oxford University Press, 2004): Public good game Ensminger (Oxford University Press, 2004): Public good game

Distribution of offers in the 4-person public goods game (N=24, . . . .
St ' petwEn bl randsigame | @ Players give more than in the NE (where contributions should be

endowment=50 Kenyan shillings with doubling of contributions by experimenter)

zero)

40

35 ’

' 8 @ Example player who gives 20 out of his 50 in a group where other
g 30 1T & three give 75 total, gets a payoff of:
g 25 6 2
£ 2 s & 50 — 20 +0.5%95 = 77.5
E 15 : é
E > 2

.05 1

.00 - t t . t 0

.0 | 2 3 4 ] .6 57 8 9 1.0

Contributions as a fraction of the endowment

@ Results: on average contributions were 60 percent of endowments
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Experimental evidence: Nash equilibrium Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game Ensminger (Oxford University Press, 2004): Public good game

@ Players give more than in the NE (where contributions should be @ Players give more than in the NE (where contributions should be
zero) zero)

@ Example player who gives 20 out of his 50 in a group where other
three give 75 total, gets a payoff of:

50-20+0.5%x95=775

@ If the same player had given 0, he would get

50+0.5x75=287.5
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Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ Players give more than in the NE (where contributions should be
Zero)

@ Example player who gives 20 out of his 50 in a group where other
three give 75 total, gets a payoff of:

50-20+05%x95=775

@ If the same player had given 0, he would get
50+0.5%x75=2875

@ What explains this?
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Experimental evidence: Nash equilibrium

Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ How do we interpret these deviations?

Players are not rational and cannot compute what is best for them
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@ How do we interpret these deviations?
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Ensminger (Oxford University Press, 2004): Public good game

@ How do we interpret these deviations?

Players are not rational and cannot compute what is best for them

Players do not adopt a pure selfish stance:
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Ensminger (Oxford University Press, 2004): Public good game

@ How do we interpret these deviations?

Players are not rational and cannot compute what is best for them

Players do not adopt a pure selfish stance:

* altruism
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Experimental evidence: Nash equilibrium

@ How do we interpret these deviations?

Players are not rational and cannot compute what is best for them

Players do not adopt a pure selfish stance:

* altruism

* aversion for inequality

Social norms
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Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ How do we interpret these deviations?

Players are not rational and cannot compute what is best for them

Players do not adopt a pure selfish stance:

* altruism

* aversion for inequality
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Ensminger (Oxford University Press, 2004): Public good game

@ Altruism: care not only about your own payoff but also payoff of
others
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Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ Altruism: care not only about your own payoff but also payoff of
others

@ Can still apply tools of game theory but with different payoffs
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Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ Altruism: care not only about your own payoff but also payoff of
others

@ Can still apply tools of game theory but with different payoffs

@ Specifically, suppose two players, you contribute X and other
contributes Y

@ Own payoff of playeriis P, = 100 — X + 0.8 x (Y + X)
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@ Specifically, suppose two players, you contribute X and other
contributes Y
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Ensminger (Oxford University Press, 2004): Public good game

@ Altruism: care not only about your own payoff but also payoff of
others

@ Can still apply tools of game theory but with different payoffs

@ Specifically, suppose two players, you contribute X and other
contributes Y

@ Own payoff of playerjis P, = 100 — X + 0.8 x (Y + X))

@ Other’s payoff P_; =100 — Y + 0.8 x (Y + X)
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Experimental evidence: Nash equilibrium Simultaneous games

Ensminger (Oxford University Press, 2004): Public good game Outline

@ Altruism: care not only about your own payoff but also payoff of
others

@ Can still apply tools of game theory but with different payoffs

@ Specifically, suppose two players, you contribute X and other
contributes Y

@ Own payoff of player i is P; = 100 — X + 0.8 % (Y + X)

@ Other's payoff P_; =100 — Y + 0.8 % (Y + X)

@ What player i is really maximizing if he is altruistic is P; + aP_; O Mixed strategies
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Mixed strategies

Inland Revenue

Experimental evidence: Nash equilibrium

Ensminger (Oxford University Press, 2004): Public good game

@ Altruism: care not only about your own payoff but also payoff of

others Audit Not audit
@ Can still apply tools of game theory but with different payoffs Declare
all 3,1 3,2
@ Specifically, suppose two players, you contribute X and other income
contributes Y Tax
Ay 0,4 | 5,0
@ Own payoff of playerjis P, = 100 — X + 0.8 % (Y + X) {die"n i i
ncome

@ Other's payoff P_; =100 — Y + 0.8 % (Y + X)
Figure: Tax game
@ What player i is really maximizing if he is altruistic is P; + aP_;

@ Can solve for Nash equilibrium @ Does this game have any (pure) strategy equilibrium?
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Mixed strategies

Theorem (Nash, 1950):

Mixed strategies

@ In previous classes, all the games we saw had a Nash equilibrium
in what is called “pure strategy": i.e where all players play one
action for sure

Every finite game has a strategy

equilibrium. @ In this game, if you know what the other player is going to choose,

the strategy that makes you better off makes him worse off
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Mixed strategies Mixed strategies
@ In previous classes, all the games we saw had a Nash equilibrium @ In previous classes, all the games we saw had a Nash equilibrium
in what is called “pure strategy": i.e where all players play one in what is called “pure strategy": i.e where all players play one
action for sure action for sure

@ In this game, if you know what the other player is going to choose,
the strategy that makes you better off makes him worse off

@ No equilibrium in pure strategies
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Mixed strategies Mixed strategies

@ In the tax game no Nash Equilibrium where the player plays an
@ In previous classes, all the games we saw had a Nash equilibrium action for sure: what is called pure strategy
in what is called “pure strategy": i.e where all players play one
action for sure

@ In this game, if you know what the other player is going to choose,
the strategy that makes you better off makes him worse off

@ No equilibrium in pure strategies

@ Other example: penalty kicks (most sports in fact)
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Mixed strategies Mixed strategies

@ In the tax game no Nash Equilibrium where the player plays an

@ In previous classes, all the games we saw had a Nash equilibrium action for sure: what is called pure strategy
in what is called “pure strategy": i.e where all players play one ) ] )
action for sure @ Exists other types of strategies, where the players randomize over

actions: called mixed strategy

@ In this game, if you know what the other player is going to choose,
the strategy that makes you better off makes him worse off

@ No equilibrium in pure strategies
@ Other example: penalty kicks (most sports in fact)

@ Intuitively the only outcome is an outcome where the other player
does not know for sure what you are going to play: players
randomize
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Mixed strategies Mixed strategies

@ In the tax game no Nash Equilibrium where the player plays an

@ In the tax game no Nash Equilibrium where the player plays an
action for sure: what is called pure strategy

action for sure: what is called pure strategy
@ Exists other types of strategies, where the players randomize over

@ Exists other types of strategies, where the players randomize over
actions: called mixed strategy

actions: called mixed strategy

Definition

A mixed strategy is a strategy where the player randomizes over the
set of actions. It is a probability distribution that assigns to each action
(or pure strategy) a likelihood of being selected.

@ A strategy is defined by the probability you place on each action

@ |tis as if you were giving these probabilities to a machine that
picked accordingly and told you what strategy you should play

Chap.1 Simultaneous games 115/133 [Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 115/133

Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory

Mixed strategies Mixed strategies

@ In the tax game no Nash Equilibrium where the player plays an

@ In the tax game no Nash Equilibrium where the player plays an
action for sure: what is called pure strategy

action for sure: what is called pure strategy
@ Exists other types of strategies, where the players randomize over

@ Exists other types of strategies, where the players randomize over
actions: called mixed strategy

actions: called mixed strategy
Definition

A mixed strategy is a strategy where the player randomizes over the
set of actions. It is a probability distribution that assigns to each action
(or pure strategy) a likelihood of being selected.

Definition

A mixed strategy is a strategy where the player randomizes over the
set of actions. It is a probability distribution that assigns to each action
(or pure strategy) a likelihood of being selected.

@ A strategy is defined by the probability you place on each action @ A strategy is defined by the probability you place on each action

@ |tis as if you were giving these probabilities to a machine that
picked accordingly and told you what strategy you should play

@ Example a strategy in tax game for tax authority could be:
“audit” with probability 0.4 and “not audit” with probability 0.6
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Mixed strategies
How are payoffs calculated?

How are payoffs calculated?

@ Payoff for a player is a weighted average of payoff of each action
where the weight is the probability: called expected payoff
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Mixed strategies

@ Payoff for a player is a weighted average of payoff of each action
where the weight is the probability: called expected payoff

@ Suppose for instance that the tax payer plays a mixed strategy:
“declare" with probability 0.2 and “lie” with 0.8.

@ Then the payoff of the tax authority if it plays “audit” is:
02x1+08x4=34
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Mixed strategies

Nash equilibrium

How are payoffs calculated?

@ Payoff for a player is a weighted average of payoff of each action
where the weight is the probability: called expected payoff

@ Suppose for instance that the tax payer plays a mixed strategy:
“declare" with probability 0.2 and “lie” with 0.8.
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@ Definition of Nash Equilibrium remains the same: combination of
strategies such that if other players play their Nash equilibrium
strategies, you also want to play your Nash equilibrium strategy
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Mixed strategies

@ To determine an equilibrium in mixed strategies, we will always use
the following essential property:

Mixed strategies

Nash equilibrium

@ Definition of Nash Equilibrium remains the same: combination of
strategies such that if other players play their Nash equilibrium
strategies, you also want to play your Nash equilibrium strategy

@ Remember strategy is defined for a mixed strategy by a
combination of probabilities
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Mixed strategies

@ To determine an equilibrium in mixed strategies, we will always use
the following essential property:

Mixed strategies

Nash equilibrium

@ Definition of Nash Equilibrium remains the same: combination of
strategies such that if other players play their Nash equilibrium
strategies, you also want to play your Nash equilibrium strategy

@ Remember strategy is defined for a mixed strategy by a
combination of probabilities

@ So the probabilities are not any probabilities: they are defined at the
equilibrium
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Mixed strategies Mixed strategies

@ To determine an equilibrium in mixed strategies, we will always use
the following essential property:

What is the Nash equilibrium of the Tax payer game?
L R

U (3,1 )
D (0,4) (5,0)

Property (Indifference)
In equilibrium, the players are indifferent (i.e get the same payoff) from
all the strategies they play with positive probability.
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Mixed strategies Mixed strategies
Example

@ To determine an equilibrium in mixed strategies, we will always use
the following essential property: What is the Nash equilibrium of the Tax payer game?
L R
U (31 )
D (0,4) (50)

Property (Indifference)
In equilibrium, the players are indifferent (i.e get the same payoff) from

al fhe strategies fhey pley wih positve probabilty
olution

@ For example, if the tax payer in equilibrium plays “declare” with Nash equilibrium is such that:

probability 0.2 and “lie” with 0.8, then his payoff if he played ) . ) .
“declare” for sure and his payoff if he played “lie” for sure should be Player 1 plays U with probability 4 /5 and D with probability 1/5
equal. Player 2 plays L with probability 2/5 and R with probability 3/5
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@ To check that this is an equilibrium, we need to show that no player @ To check that this is an equilibrium, we need to show that no player
can do better by switching strategy if the other plays his Nash can do better by switching strategy if the other plays his Nash
equilibrium strategy. equilibrium strategy.

@ Fix player 2 at his Nash equilibrium strategy: plays L with probability
2/5 and R with probability 3/5.

@ We need to check that Player 1 is ready to play U with probability
4/5 and D with probability 1/5, i.e that he is indifferent between U
and D:
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Mixed strategies Mixed strategies
@ To check that this is an equilibrium, we need to show that no player @ To check that this is an equilibrium, we need to show that no player
can do better by switching strategy if the other plays his Nash can do better by switching strategy if the other plays his Nash
equilibrium strategy. equilibrium strategy.
@ Fix player 2 at his Nash equilibrium strategy: plays L with probability @ Fix player 2 at his Nash equilibrium strategy: plays L with probability
2/5 and R with probability 3/5. 2/5 and R with probability 3/5.

@ We need to check that Player 1 is ready to play U with probability
4/5 and D with probability 1/5, i.e that he is indifferent between U
and D:

> PayofffromU: 2 x 3+ 3 x3=3
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Mixed strategies Mixed strategies

@ To check that this is an equilibrium, we need to show that no player @ To check that this is an equilibrium, we need to show that no player
can do better by switching strategy if the other plays his Nash can do better by switching strategy if the other plays his Nash
equilibrium strategy. equilibrium strategy.

@ Fix player 2 at his Nash equilibrium strategy: plays L with probability @ Fix player 2 at his Nash equilibrium strategy: plays L with probability
2/5 and R with probability 3/5. 2/5 and R with probability 3/5.

@ We need to check that Player 1 is ready to play U with probability @ We need to check that Player 1 is ready to play U with probability
4/5 and D with probability 1/5, i.e that he is indifferent between U 4/5 and D with probability 1/5, i.e that he is indifferent between U
and D: and D:

> PayofffromU: 2 x 3+ 2 x3=3 > PayofffromU: 2 x 3+ 3 x3=3
> PayofffromD: 2 x 0+ x5=3 » PayofffromD: 2 x 0+ 2 x5=3

@ Fix player 1 at his Nash equilibrium strategy: plays U with
probability 4/5 and D with probability 1/5. Is player 2 indifferent
between L and R:

> PayofffromL: ¢ x1+1x4=28
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@ To check that this is an equilibrium, we need to show that no player @ To check that this is an equilibrium, we need to show that no player
can do better by switching strategy if the other plays his Nash can do better by switching strategy if the other plays his Nash
equilibrium strategy. equilibrium strategy.

@ Fix player 2 at his Nash equilibrium strategy: plays L with probability @ Fix player 2 at his Nash equilibrium strategy: plays L with probability
2/5 and R with probability 3/5. 2/5 and R with probability 3/5.

@ We need to check that Player 1 is ready to play U with probability @ We need to check that Player 1 is ready to play U with probability
4/5 and D with probability 1/5, i.e that he is indifferent between U 4/5 and D with probability 1/5, i.e that he is indifferent between U
and D: and D:

> PayofffromU: 2 x 3+ 2 x3=3 > PayofffromU: 2 x 3+ 3 x3=3
> PayofffromD: 2 x 0+ x5=3 > PayofffromD: 2 x 0+ 2 x5=3

@ Fix player 1 at his Nash equilibrium strategy: plays U with @ Fix player 1 at his Nash equilibrium strategy: plays U with
probability 4/5 and D with probability 1/5. Is player 2 indifferent probability 4/5 and D with probability 1/5. Is player 2 indifferent
between L and R: between L and R:

> PayofffromL: g x 1+ 3 x4=§
» Payoff fromR: 2 x24+ 1 x0=28

[oe]
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Mixed strategies

Mixed strategies

Finding it

@ If the strategy is not given to you but you want to find it, just assume
it is of the type:
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Mixed strategies
Finding it

@ If the strategy is not given to you but you want to find it, just assume
it is of the type:

» Player 1 plays U with probability p and D with 1 — p
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Finding it
@ If the strategy is not given to you but you want to find it, just assume

it is of the type:

» Player 1 plays U with probability p and D with 1 — p
» Player 2 plays L with probability g and R with 1 — g
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Mixed strategies
Finding it

@ |f the strategy is not given to you but you want to find it, just assume
it is of the type:

» Player 1 plays U with probability p and D with 1 — p
» Player 2 plays L with probability g and R with 1 — g

@ Player 1 has to be indifferent between U and D, so:

allnN

3xq+3x(1-q)=0xq+5x(1—-q)=q=
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Mixed strategies

Mixed strategies

@ Idea of people randomizing before making decisions can appear

Finding it

@ If the strategy is not given to you but you want to find it, just assume unnatural.

it is of the type:

» Player 1 plays U with probability p and D with 1 — p ® Mixed strategies are commonly used:

» Player 2 plays L with probability ¢ and R with 1 — q

@ Player 1 has to be indifferent between U and D, so:

2
3><q+3><(1—q):0><q+5><(1—q):>q:5
@ Player 2 has to be indifferent between L and R, so:
4
1><p+4><(1—p):2><p+0><(1—p):p:5
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@ |dea of people randomizing before making decisions can appear @ Idea of people randomizing before making decisions can appear
unnatural. unnatural.

@ Mixed strategies are commonly used:
» by poker players;
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Mixed strategies Mixed strategies

@ |dea of people randomizing before making decisions can appear @ Idea of people randomizing before making decisions can appear
unnatural. unnatural.
@ Mixed strategies are commonly used: @ Mixed strategies are commonly used:

» by poker players;
» by traffic wardens (aka meter maids);

by poker players;

by traffic wardens (aka meter maids);
by tax controllers;

for rebates and special offers;

Yy vV VY
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@ |dea of people randomizing before making decisions can appear @ Idea of people randomizing before making decisions can appear
unnatural. unnatural.
@ Mixed strategies are commonly used: @ Mixed strategies are commonly used:

» by poker players;
» by traffic wardens (aka meter maids);
» by tax controllers;

by poker players;

by traffic wardens (aka meter maids);
by tax controllers;

for rebates and special offers;

Yy VY VvV VY
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Mixed strategies

@ |dea of people randomizing before making decisions can appear
unnatural.

Simultaneous games

Outline

@ Mixed strategies are commonly used:

by poker players;

by traffic wardens (aka meter maids);
by tax controllers;

for rebates and special offers;

Yy vV vV VY VY

@ There are a number of interpretations given to justify this: could be
population averages

@ Empirical evidence: mixed strategies
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Mixed strategies Chiappori et al. (2002): testing mixed strategies

@ |dea of people randomizing before making decisions can appear
unnatural.

® Mixed strategies are commonly used: @ Mixed strategies can appear unnatural

» by poker players;
» by traffic wardens (aka meter maids);
» by tax controllers;

» for rebates and special offers;

@ There are a number of interpretations given to justify this: could be
population averages

@ Players are indifferent, but the probabilities with which they
randomize are very well defined: they leave the other players
indifferent
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

@ Well defined environment

@ Mixed strategies can appear unnatural

@ Need empirical evidence
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

@ Well defined environment

@ Number of players: 2
@ Mixed strategies can appear unnatural

@ Need empirical evidence

@ Chiappori, Levitt and Groseclose (AER, 2002) using empirical
evidence from the French and Italian first-leagues containing 459
penalty kicks over a period of 3 years (1997-2000).
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

@ Well defined environment @ Well defined environment
@ Number of players: 2 @ Number of players: 2
@ Strategy sets can be well summarized by (Left, Middle, Right) @ Strategy sets can be well summarized by (Left, Middle, Right)

@ No ambiguity on preferences of players

@ Players play simultaneously
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies
@ Well defined environment @ Well defined environment

@ Number of players: 2 @ Number of players: 2

@ Strategy sets can be well summarized by (Left, Middle, Right) @ Strategy sets can be well summarized by (Left, Middle, Right)
@ No ambiguity on preferences of players @ No ambiguity on preferences of players

@ Players play simultaneously

» The maximum speed the ball can reach exceeds 125 mph. At this
speed, the ball enters the goal about two-tenths of a second after
having been kicked.
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

, : ° i [ ize.
o Well defined environment Seems clear that strikers and goalies randomize

- "
o Number of players: 2 @ But do probabilities played correspond to the theory”

@ Strategy sets can be well summarized by (Left, Middle, Right)
@ No ambiguity on preferences of players

@ Players play simultaneously

» The maximum speed the ball can reach exceeds 125 mph. At this
speed, the ball enters the goal about two-tenths of a second after
having been kicked.

@ The structure of this game is such that there is no pure-strategy
equilibrium.
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

@ Seems clear that strikers and goalies randomize. @ Seems clear that strikers and goalies randomize.

@ But do probabilities played correspond to the theory?
» Does the indifference property holds?
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

@ Seems clear that strikers and goalies randomize. @ Seems clear that strikers and goalies randomize.
@ But do probabilities played correspond to the theory? @ But do probabilities played correspond to the theory?
» Does the indifference property holds? » Does the indifference property holds?
» Do the probabilities with which each player randomize leave the other » Do the probabilities with which each player randomize leave the other
player indifferent? player indifferent?

@ If the indifference property holds, the kicker’s scoring probability
should be the same whether he kicks L, C or R, and the
goalkeeper’s probability of averting a goal should the same whether
he dives L, C or R.

» If the players were not indifferent, then it would pay them to adjust
their probabilities towards more frequent selection of the strategy with
the higher scoring probability (in the case of the kicker) or the
strategy with the higher probability of averting a goal (in the case of
the goalkeeper).
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

@ Seems clear that strikers and goalies randomize. e Important elements of the theory:

@ But do probabilities played correspond to the theory?

» Does the indifference property holds?
» Do the probabilities with which each player randomize leave the other
player indifferent?

@ If the indifference property holds, the kicker’s scoring probability
should be the same whether he kicks L, C or R, and the
goalkeeper’s probability of averting a goal should the same whether
he dives L, C or R.
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

@ Important elements of the theory: @ Important elements of the theory:
» Kicking at the center when the keeper stays is very damaging for the » Kicking at the center when the keeper stays is very damaging for the
kicker (the scoring probability is zero) kicker (the scoring probability is zero)

» A right-footed kicker (about 85 percent of the population) will find it
easier to kick to his left (his “natural side”) than his right; and vice
versa for a left-footed kicker.

* For simplicity, for shots involving left-footed kickers, the direction will be
reversed so that shooting left correspond to the “natural side” for all
kickers.
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies
@ Important elements of the theory: @ Important elements of the theory:
» Kicking at the center when the keeper stays is very damaging for the » Kicking at the center when the keeper stays is very damaging for the
kicker (the scoring probability is zero) kicker (the scoring probability is zero)
» A right-footed kicker (about 85 percent of the population) will find it » A right-footed kicker (about 85 percent of the population) will find it
easier to kick to his left (his “natural side”) than his right; and vice easier to kick to his left (his “natural side”) than his right; and vice
versa for a left-footed kicker. versa for a left-footed kicker.

* For simplicity, for shots involving left-footed kickers, the direction will be
reversed so that shooting left correspond to the “natural side” for all
kickers.

» Probability of scoring in the middle is lower than on the sides if goalie
does not go the correct way
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Chiappori et al. (2002): testing mixed strategies

@ Indeed, we have:

TABLE 1 —OBSERVED SCORING PROBABILITIES,
BY FooT anD SIDE

Goalie
Correct Middle or
Kicker side wrong side
Natural side (“left™) 63.6 percent 94.4 percent

Opposite side (“right™) 43.7 percent 89.3 percent
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Chiappori et al. (2002): testing mixed strategies

@ Indeed, we have:

TABLE 1 —OBSERVED SCORING PROBABILITIES,
BY FooT anD SIDE

Goalie
Correct Middle or
Kicker side wrong side
Natural side (“left™) 63.6 percent 94.4 percent

Opposite side (“right™) 43.7 percent 89.3 percent

@ The scoring probability when the goalie is mistaken varies between
89 percent and 95 percent (depending on the kicking foot and the
side of the kick), whereas it ranges between 43 percent and 64
percent when the goalkeeper makes the correct choice.
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Chiappori et al. (2002): testing mixed strategies

@ Indeed, we have:

TABLE 1—OBSERVED SCORING PROBABILITIES,
BY FooT AND SIDE

Goalie
Correct Middle or
Kicker side wrong side
Natural side (*left™) 63.6 percent 94 .4 percent

Opposite side (“right™) 43.7 percent 89.3 percent

@ The scoring probability when the goalie is mistaken varies between
89 percent and 95 percent (depending on the kicking foot and the
side of the kick), whereas it ranges between 43 percent and 64
percent when the goalkeeper makes the correct choice.

@ Also, the scoring probability is always higher on the kicker’s natural
side.
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Chiappori et al. (2002): testing mixed strategies

Prediction
The indifference property leads to several testable propositions:

(i) The right-footed kicker selects L (his natural side) more often
than R;
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Prediction
The indifference property leads to several testable propositions:

(i) The right-footed kicker selects L (his natural side) more often
than R;

(ii) The goalkeeper selects L more often than R;
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Chiappori et al. (2002): testing mixed strategies

The indifference property leads to several testable propositions:

(i) The right-footed kicker selects L (his natural side) more often
than R;

(ii) The goalkeeper selects L more often than R;

(iii) The goalkeeper selects L more often than the right-footed
kicker;

(iv) The kicker selects C more often than the goalkeeper.
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Chiappori et al. (2002): testing mixed strategies

The indifference property leads to several testable propositions:

(i) The right-footed kicker selects L (his natural side) more often
than R;

(ii) The goalkeeper selects L more often than R;

(iii) The goalkeeper selects L more often than the right-footed
kicker;
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Chiappori et al. (2002): testing mixed strategies

@ ltis straightforward to show that departures from these propositions
lead to violations of the indifference property:
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

@ |t is straightforward to show that departures from these propositions @ |t is straightforward to show that departures from these propositions
lead to violations of the indifference property: lead to violations of the indifference property:

» In the case of (i), if the right-footed kicker selects L and R with equal » In the case of (i), if the right-footed kicker selects L and R with equal
probability, the goalkeeper would not be indifferent between L and R, probability, the goalkeeper would not be indifferent between L and R,
because he would avert a goal more often by selecting R (diving to because he would avert a goal more often by selecting R (diving to
the kicker's weaker side). the kicker’s weaker side).

» In the case of (ii), if the goalkeeper selects L and R with equal
probability, the right-footed kicker would not be indifferent between L
and R, because he would score more often by selecting L (kicking on
his stronger side).

» Selecting C is highly damaging for the kicker if the goalkeeper also
selects C. For the kicker to be indifferent between C and either L or R,
in accordance with (iv), the goalkeeper must only select C very rarely.

Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 130/ 133 [Jérome MATHIS (LEDa - Univ. Paris-Dauphin Game Theory Chap.1 Simultaneous games 130/133

Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

TABLE 3—OBSERVED MATRIX OF SHOTS TAKEN

@ It is straightforward to show that departures from these propositions

lead to violations of the indifference property: Kicker
Goalie Left Middle Right Total
» In the case of (i), if the right-footed kicker selects L and R with equal
probability, the goalkeeper would not be indifferent between L and R, Left 17 48 95 260
because he would avert a goal more often by selecting R (diving to Middle 4 3 4 11
the kicker’'s weaker side). Right 85 28 75 188

» In the case of (i), if the goalkeeper selects L and R with equal Total 206 79 174 459
probability, the right-footed kicker would not be indifferent between L

and R, because he would score more often by selecting L (kicking on
his stronger side). @ Predictions (i) & (ii): the kicker and the goalie are both more likely to

go L than R.
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies

ML 3—OBSERVED M ATRECGF SHOTS TAKEN TABLE 3—OBSERVED MATRIX OF SHOTS TAKEN
Kicker Kicker
Sl Left Middle Right Totil Goalie Left Middle Right Total
Left a7 48 % 260 Left 117 48 05 260
Middle . 3 4 L1 Middle 4 3 4 1
Right 85 28 75 188 Right 85 28 75 188
Total 206 i Lid 433 Total 206 79 174 459

@ Predictions (i) & (ii): the kicker and the goalie are both more likely to
go L than R.

» This prediction is confirmed: in the data, 260 jumps are made to the
(kicker’s) left, and only 188 to the right.

@ Prediction (iii): The goalkeeper selects L more often than the
right-footed kicker.
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Chiappori et al. (2002): testing mixed strategies Chiappori et al. (2002): testing mixed strategies
TaABLE 3—OBSERVED MATRIX OF SHOTS TAKEN TABLE 3—OBSERVED MATRIX OF SHOTS TAKEN
Kicker Kicker
Goalie Left Middle Right Total Goalie Left Middle Right Total
Left 117 48 95 260 Left 117 48 95 260
Middle + ) h 11 Middle 4 3 4 11
Right 85 28 75 188 Right 85 28 75 188
Total 206 79 174 459 Total 206 79 174 459

@ Predictions (i) & (ii): the kicker and the goalie are both more likely to o
@ Prediction (iii): The goalkeeper selects L more often than the

go L than R. aht-footed kick
right-footed kicker.
» This prediction is confirmed: in the data, 260 jumps are made to the 9
(kicker’s) left, and only 188 to the right. » The result emerges very clearly in the data: goalies play “left” 260
» The same pattern holds for the kicker, although in a less spectacular times (56.6 percent of kicks), compared to 206 (44.9 percent)
way (206 against 174). instances for kickers.
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Chiappori et al. (2002): testing mixed strategies

TABLE 3—OBSERVED MATRIX OF SHOTS TAKEN

Kicker
Goalie Left Middle Right Total
Left 117 48 95 260
Middle 4 3 4 11
Right 85 28 75 188
Total 206 79 174 459

@ Prediction (iv): The kicker selects C more often than the goalkeeper.
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Chiappori et al. (2002): testing mixed strategies

TABLE 3—OBSERVED MATRIX OF SHOTS TAKEN

Kicker
Goalie Left Middle Right Total
Left 117 48 95 260
Middle 4 3 4 11
Right 85 28 75 188
Total 206 79 174 459

@ Prediction (iv): The kicker selects C more often than the goalkeeper.

» The result emerges very clearly in the data: kickers play “center” 79
times in the sample, compared to only 11 times for goalies.
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