Derivative Instruments (Produits dérivés) - Solution to the Exam

Université Paris Dauphine-PSL - Master 1 I.E.F. (272)

Jérôme MATHIS (LEDa)

December 2022. Duration : 2h. No document allowed. Calculator allowed. Answers can be formulated in English or French.

Solution 1 (1 pt) The three year forward price is $F = (S_0 - I)e^{rT}$, with $S_0 = 30 \in$, r = 10%, T = 3, and I denotes the present value of the income, which is $I = 2e^{-0.1 \times 1} + 2e^{-0.1 \times 2} \simeq 3.45 \in$. It is then $F = (30 - 3.45)e^{0.1 \times 3} \simeq 35.84 \in$.

Solution 2 (2 pts) The producer of the commodity takes a short futures position. The gain on the futures is $F_1 - F_2 = 1015 - 981$ or \$34. The effective price realized is therefore $S_2 + F_1 - F_2 = 980 + 34$ or \$1014. This can also be calculated as the March 1 futures price (= $F_1 = 1015$) plus the November 1 basis ($S_2 - F_2 = -1$).

Solution 3 (1 pt) The bond pays $1.5 \in$ in 6, 12, 18, and 24 months, and $102.5 \in$ in 30 months. The cash price is

$$1.5(e^{-0.03\times0.5} + e^{-0.032\times1.0} + e^{-0.033\times1.5} + e^{-0.036\times2.0}) + 101.5e^{-0.037\times2.5} \simeq 98.28$$

Solution 4 (1 pt) The bond pays $1.5 \in$ in 6, 12, 18, 24, and 30 months, and $101.5 \in$ in 36 months. The bond yield is the value of y that solves

$$1.5e^{-0.5y} + 1.5e^{-1.0y} + 1.5e^{-1.5y} + 1.5e^{-2.0y} + 1.5e^{-2.5y} + 101.5e^{-3y} \simeq 102$$

Solution 5 (1 pt) The cheapest-to-deliver bond is the one for which Quoted bond price - (Most recent settlement price x Conversion factor) is least. Here, the value of such a formula is reported in the fourth column of the following table.

Bond Price Conversion factor

1	96.5	0.963	4.052
2	109	1.089	4.456
3	121	1.224	3.496

The cheapest-to-deliver bond is then bond 3.

Solution 6 (1 pt) The contract gives one the obligation to sell for $F_0 = 40 \in$ when a forward price negotiated today would give one the obligation to sell for $F_1 = 42 \in$. The value of the contract to the party with a short position is $f = -(F_1 - F_0)e^{rT} = -(40 - 42)e^{-0.08 \times 3/12} \simeq -1.96 \in$.

Solution 7 (1 pt) Let ρ denotes the correlation between the futures price and the commodity price, and σ_S (resp. σ_F) denotes the standard deviation of monthly changes in the price of commodity A (resp. in a futures price for a contract on commodity B). The optimal hedge ratio is $h^* = \rho \frac{\sigma_S}{\sigma_F} = 0.86 \frac{2.2}{2.7} \simeq 0.7$.

Solution 8 (1 pt) Put-call parity is $c + Ke^{-rT} = p + S_0 - D$. In this case $K = 50 \in$, $S_0 = 51 \in$, r = 0.06, T = 1, and $c = 6 \in$. The present value of the dividend, D, is $1 \times e^{-0.06 \times 0.5} = 0.97$. It follows that $p = 6 + 50e^{-0.06 \times 1} - (51 - 0.97) = 3.06 \in$.

Solution 9 (1 pt) a), c) and d) all generate a higher price (premium) on American call options. The answer is b) as a more liquid underlying asset does not generate a higher price.

Solution 10 (3 pts) The swap involves exchanging the sterling interest of 12×0.072 or £0.864 million for the euro interest of $10 \times 0.06 = 0.6$ million \in in 1 month, 13 months, and 25 months. The principal amounts are also exchanged at the end of the life of the swap. The continuously compounded interest rates are :

 $ln(1.05) \simeq 4.88\%$ per annum in sterlings; and $ln(1.04) \simeq 3.92\%$ per annum in euros

The 1-month, 13-month and 25-month forward exchange rates are :

$$F_{1/12} = 1.16e^{(0.0392 - 0.0488) \times 1/12} \simeq 1.159;$$

$$F_{13/12} = 1.16e^{(0.0392 - 0.0488) \times 13/12} \simeq 1.148; \text{ and}$$

$$F_{25/12} = 1.16e^{(0.0392 - 0.0488) \times 25/12} \simeq 1.137.$$

The values of the three forward contracts corresponding to the exchange of interest for the party paying euros are therefore

$$(0.864 \times 1.159 - 0.6)e^{-0.03922 \times 1/12} \simeq 0.4 \text{ million} \in;$$

 $(0.864 \times 1.148 - 0.6)e^{-0.03922 \times 13/12} \simeq 0.376 \text{ million} \in; \text{and}$
 $(0.864 \times 1.137 - 0.6)e^{-0.03922 \times 25/12} \simeq 0.352 \text{ million} \in.$

The value of the forward contract corresponding to the exchange of principals is

$$(12 \times 1.137 - 10)e^{-0.03922 \times 25/12} \simeq 3.358 \text{ million} \in \mathbb{C}$$

The total euros value of the swap to the party paying euros is then

 $0.4 + 0.376 + 0.352 + 3.358 \simeq 4.486$ million \in .

Solution 11 (2 pts) The value of the sterling bond underlying the swap is

$$0.864e^{(-0.0488)\times 1/12} + 0.864e^{(-0.0488)\times 13/12} + 12.864e^{(-0.0488)\times 25/12} \simeq \pounds 13.300$$
 million.

The value of the euro bond underlying the swap is

 $0.6e^{(-0.0392)\times 1/12} + 0.6e^{(-0.0392)\times 13/12} + 10.6e^{(-0.0392)\times 25/12} \simeq 10.942 \text{ million} \in \mathbb{C}$

The value of the swap to the party paying sterling is therefore

$$\frac{10.942}{1.16} - 13.300 = -\pounds 3.867$$
 million.

This is consistent with the value found in the previous exercise as

$$(-1) \times (-\pounds 3.867 \text{ million}) \times 1.16 = 4.486 \text{ million} \in \mathbb{C}$$

Solution 12 (3 pts) a) The table that depicts the variation of the trader's profit per share as a function of the asset price at maturity with respect to the strikes writes as :

	S_T Long Pt		ut	Short Call		Long stock			π		
	$S_T \le K_1$	$K_1 - S_T - P_0$		C_0		$S_T - S_0$		K	$T_1 + C_0 - P_0 - S_0$		
	$K_1 < S_T \le K_2$	$-P_0$		C_0		$S_T - S_0$		C	$Y_0 - P_0 + S_T - S_0$		
	$K_2 < S_T$	$-P_0$		$C_0 + I_0$	$K_2 - S_T$		$S_T - S_0$		$b_0 - P_0 + K_2 - S_0$		
which, with the corresponding numbers $(S_0 = 21, K_1 = 16, P_0 = 1, K_2 = 25, \text{ and } C_0 = 2.5)$ gives :											
	S_T	Long Put	Shor	rt Call	Long st	ock	π				
	$S_T \le 16$	$15 - S_T$	4	2.5	$S_T - 2$	21	-3.5				
	$16 < S_T \le 25$	-1	2.5		$S_T - 21$		$S_T - 19.5$				
	$25 < S_T$	-1	$27.5 - S_T$		$S_T - 21$		5.5				

b) The corresponding diagram is

Figure1

The maximal profit is then $5.5 \times 500 = 2750 \in$, the maximal loss is $3.5 \times 500 = 1750 \in$, and the breakeven point is $19.5 \in$.

Solution 13 (2 pts) We have

$$S_0 - K \le C_0 - P_0 \le S_0 - Ke^{-rT}$$

which is equivalent to

$$C_0 - S_0 + Ke^{-rT} \le P_0 \le C_0 - S_0 + K$$

with $S_0 = 13$, K = 14, C = 2, 5, r = 4%, and T = 1/12. So

 $3.45 \le P_0 \le 3.5.$

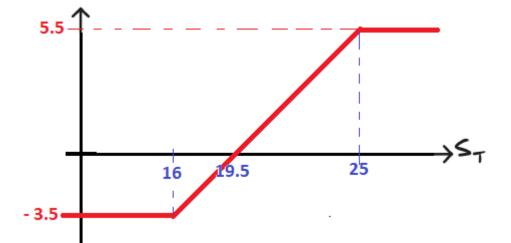


FIGURE 1 – Diagram of the Corridor