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 Elastic demand, sunk costs and the Kreps-Scheinkman
 extension of the Cournot model*

 Paul Madden
 School of Economic Studies, Manchester University, Manchester M13 9PL, UK

 Received: May 24, 1995; revised version: March 6, 1997

 Summary. The paper shows that, with any rationing mechanism between
 the efficient and proportional extremes, the Kreps-Scheinkman two-stage
 quantity-price game reduces to the Cournot model if demand is uniformly
 elastic and if all costs are sunk at the first stage, thus providing positive
 results to set against existing negative statements.

 JEL Classification Numbers: C72, D43, LI3.

 1 Introduction

 Kreps and Scheinkman (1983) have shown how the classic Cournot outcome
 can emerge from a two-stage game where quantities are simultaneously
 chosen at the first stage, followed at stage two by simultaneous price
 announcements with demands rationed via the "efficient" rationing rule.
 Davidson and Deneckere (1986) argued that this result is not robust - the
 Cournot outcome is not an equilibrium if rationing follows the opposite
 ("proportional") extreme to the efficient rule or any rule "strictly between"
 these two extremes. The Davidson and Deneckere proof assumes zero costs
 at the first stage, but the conclusion remains if these costs are sufficiently
 small and if the rationing scheme is sufficiently different from the efficient
 rule (see Tir?le, (1988, pp. 212-218, 222-233); see also the discussions of
 Dixon, 1987, p. 269; Vives, 1993, pp. 466-467).

 The objective of this note is to present a family of two-stage models ? la
 Kreps-Scheinkman in which the Davidson-Deneckere problem disappears.
 Our critical assumptions are (a) that demand is uniformly elastic, a possi
 bility ruled out in the earlier papers, and (b) that all costs are incurred at the
 first stage, a restriction not needed in the earlier papers. Assumption (a) is

 *I am grateful to workshop participants at Manchester University, to Huw Dixon and to a
 referee for helpful comments. Remaining errors remain entirely the author's responsibility.
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 200  P. Madden

 easily satisfied in models based on CES utility, such as those of the mo
 nopolistic competition literature inspired by Dixit and Stiglitz (1977). As
 sumption (b) requires that all costs (e.g. capacity and output) are sunk prior
 to the output being brought to market and the pricing decision made. It is an
 empirical matter as to whether our assumption or the Kreps-Scheinkman
 (1983, p. 337) alternative (capacity chosen at stage one, output chosen after
 prices and demands are realised at stage two) is the more appropriate.
 However within our two assumptions our model is quite general - there is an
 arbitrary number of firms with arbitrary cost functions, and an arbitrary
 rationing scheme between (and including) the efficient and proportional ex
 tremes. The result is a strong equivalence between the Cournot outcome and
 perfect equilibrium of the two-stage game. In Tirole's (1988) terminology our
 two-stage Kreps-Scheinkman model has the exact Cournot reduced form;
 following any quantities chosen at the first stage, Nash equilibrium in the
 second stage pricing subgame induces unique expected payoffs which are the
 Cournot payoffs corresponding to the quantities, ensuring in particular that
 perfect equilibria of the two stage game coincide with Cournot-Nash equi
 librium.

 We should point out that this proposition is not that surprising, partic
 ularly in the light of Allen and Hellwig (1986), whose results imply that under
 proportional rationing with our demand assumptions, the unique expected
 payoffs in a Bertrand-Edgeworth equilibrium (= our second stage pricing
 subgame) are those induced by "market-clearing" prices if the given (first
 stage in our case) aggregate quantity is at a point on the demand curve where
 demand is elastic. Since proportional rationing provides the greatest incen
 tive to upward price deviation, the survival of the Allen-Hellwig result to
 general rationing schemes is to be expected, and indeed is demonstrated here.

 We show also that this strong Cournot/Kreps-Scheinkman equivalence is
 consistent with existence and uniqueness of Cournot-Nash equilibrium, un
 der relatively mild additional assumptions which allow uniform unit elastic
 demand as an extreme. Moreover a slightly weaker equivalence holds either
 if the range of output levels over which demand is elastic is sufficiently wide,
 or if costs are sufficiently large.

 The elastic demand and sunk cost assumptions used to generate the
 equivalence results are restrictive assumptions, particularly when taken to
 gether. What follows may therefore be interpreted as negative towards the
 extent of relevance of the Cournot outcome.

 On the other hand, within these two assumptions, the paper provides
 strong and robust support for the Cournot story.

 2 Definitions and assumptions

 There are n firms, with firm i producing a quantity of a homogeneous good
 qi > 0 at cost cfa), i = 1,..., n, where c, : R+ ? R+ is firm f's cost function
 and c/(0) = 0, f = 1,..., n. Given our sunk cost assumption there is no need
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 to distinguish capacity and output decisions. Market demand when there is a
 single price p is Q = D(p), and market revenue in terms of price is then
 4>{p)=pD{p).

 Assumption 1. (a) The demand function D : R++ ?> R++ is C2 with L/(p) < 0
 everywhere, lim D(p) = +oo and lim D(p) = 0

 (b) There exists a > 0 such that the market revenue function <\> : R++ ?> R++
 is strictly increasing on (0,a) and non-increasing on (0,00).

 Part (a) of assumption 1 insists that the market demand curve is well
 behaved, downward sloping and asymptoting to the axes. Part (b) says that
 market demand is inelastic at prices p < a, and elastic at p > a. The case
 a ? 0 then indicates uniformly elastic demand, while a > 0 admits eventually
 inelastic demand.

 Assumption 1 may be equivalently and alternatively stated in terms of the
 inverse market demand, p = F(Q) and market revenue in terms of quantity,

 HQ) = QF(Q)> as follows.

 Assumption 2. (a) The inverse market demand function F : R++ ? R++ is C2
 with F'(Q) < 0 everywhere, lim F(Q) = 0 and limF(g) = +00 Q-+00 Q-+0
 (b) There exists b > 0 such that the market revenue function \j/ : R++ ? i?++
 is non-decreasing on (0, b) and strictly decreasing on (?, 00)
 The equivalence between assumptions 1 and 2 is straightforward to

 demonstrate, with F ? D~x and b = D(a)\ b ? +00 is then uniformly elastic
 demand.

 A well-known special case of the uniform elastic demand specification is
 provided by the constant elasticity demand functions where, for example,
 D(p) =p~\?> 1; then </>(/?) =p{-?,F(Q) = Q~? and i?/(Q) = g1-? Notice
 that assumption 1/2 does not entail necessarily that lim <?>(p) p?*oo

 (= lim \?/(Q)) = 0; for instance, the constant unit elastic example above

 (e = 1) satisfies assumption 1/2 but lim <?>(p) ? lim \?/(Q) = 1. We remark p?>oo Q?>0
 here that the specification of this paper has been stretched to accommodate
 uniform unit elasticity, since common examples give rise to this case. For
 instance, Cobb-Douglas utility functions generate unit elastic individual
 demands, and overlapping generation models with consumption only in old
 age and income only when young produce unit elastic aggregate demand.
 Nevertheless we shall assume, as seems most natural and plausible, that firms
 earn zero revenue if Q ? 0, which will allow a payoff discontinuity in our
 Cournot and Kreps-Scheinkman models.

 In the Cournot model firms choose output levels qt,i= 1,...,? simulta
 n

 neously, producing an aggregate output Q=J2 Qp m tne sequel Q will al
 7=1

 ways denote this aggregate output and q denotes the vector (qx,...,qn).
 Cournot payoff functions are nf : R\ ?> R, i = 1,..., n where;
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 <(? .,-,?-) = {?l
 F(Q)-Ci(qt) i?qi>0

 0 if # = 0

 The separate description for q? = 0 here is needed only when Q = 0; notice
 again the possibility of a discontinuity in n] at Q = 0 (e.g. with unit elastic
 demand).

 In the Kreps-Scheinkman model firms choose output levels qi,i? l,...,n
 simultaneously at stage 1. Then, with production costs sunk and with pro
 duction levels common knowledge, firms choose prices /?/ > 0, i = 1,... ,n
 simultaneously at stage 2; p denotes the vector (pi,... ,pn). In Kreps and
 Scheinkman (1983), and in Osborne and Pitchik (1986) and Vives (1986),
 demand at stage 2 is rationed amongst firms according to the so-called ef
 ficient (or surplus-maximizing) rule; the following is the demand faced by
 firm f following the production vector q if the announced, stage 2 prices are/?;

 &iE{q,p) = max  0,  D{pi) - YI **
 Pk < Pi

 <li

 E qk
 Pk =p?

 Here firms charging less than firm i serve those consumers with the highest
 valuation of the good, leaving the square bracket term to be shared amongst
 firms charging p? in proportion to their production levels.

 At an opposite extreme is the proportional (or Beckmann, 1965) rule,
 used in particular by Allen and Hellwig (1986);

 AiP(q,p) =max< 0,
 Pk<Pi

 qk
 D(pk)  D(pi)  E qk

 Pk=Pi

 Here the consumers served by lower priced firms are chosen randomly;
 qk/D(pk) is then the fraction of consumers served by k, thus leaving the
 square bracket fraction to be served by firms charging/?/.

 Since D is decreasing it follows that J] (qk/D{pk)) {D{pi)) < E #*> and
 Pk<Pi Pk<pi

 so AiE(q,p) < AiP(q,p) for all q ?R\,p ?R\+. As in Davidson and
 Deneckere (1986), our rationing specification allows the mechanism to take
 on forms intermediate between the efficient and proportional extremes. Let
 Afa,p) denote the stage 2 demand facing i after production q when prices p
 are announced. We assume

 Assumption 3. The rationed demand function at stage 2 of the Kreps
 Scheinkman game for firm i, i = 1,..., n is A, : Rn+ x Rn++ ? R+ and satisfies;

 (i) AiE(q,p) < Ai(q,p) < Aip(q,p), (q,p) ? R\ x Rn++
 (ii) A/ depends only on these /?/ for which qt > 0.

 At stage 2 revenues accrue to the firms, firm i receiving Rfa,p) where;
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 Rifap) = PiU?a{qu&i(q,p)], ? = 1,...,?
 Thus payoffs in the full two-stage Kreps-Scheinkman game are
 7tfs : Rn+ x R\+ -> R where, for i = 1,..., n;

 nfs(q,p)=Ri(q,p)-Ci(qi).

 3 Equivalence of Kreps-Scheinkman and Cournot under elastic demand

 The broad issue is whether the Cournot model can "survive" in some sense

 the addition of the second stage endogenous pricing subgame, thus removing
 the need to invoke the auctioneer to justify the emergence of market-clearing
 prices. A strong sense of "survival" in this context occurs when, in Tirole's
 (1988) terminology, the Kreps-Scheinkman model has the exact Cournot
 reduced form, meaning that if q e R+ is chosen at stage 1 of the Kreps
 Scheinkman game then the following second stage subgame Nash equilib
 rium always induces expected payoffs equal to the Cournot payoffs following
 q. Formally, denote by (px,..., pn) a vector of mixed strategies for the stage 2
 subgame (i.e. an ?-vector of probability measures on i?++), and let p denote
 the product measure p = Ylp? on R++.

 Definition. The Kreps-Scheinkman model has the exact Cournot reduced
 form if for all q eR+ and for all mixed strategy Nash equilibria (p{,..., pn) of
 the stage 2 subgame following q,

 / Ri(q,p) dp(p) - Ci(qi) = l?&q), i = 1,..., n
 Jr?++

 In this section we first show that the Kreps-Scheinkman model has the exact
 Cournot reduced form if demand is uniformly elastic, and then move on to
 show that such a demand specification is consistent with existence and
 uniqueness of pure strategy Cournot-Nash equilibrium. Finally, we show
 that a weaker equivalence of the Kreps-Scheinkman and Cournot models
 prevails if either the range of elastic demand or costs are sufficiently large.

 It is obvious that proportional rationing will ensure that firms an
 nouncing the market-clearing price pt = F(Q), i = 1,..., n will be a Nash
 equilibrium of the stage 2 Kreps-Scheinkman subgame, if Q is at an elastic
 point of the demand curve. No firm will lower price, since they can sell all
 available output at F(Q). And raising price will capture a fraction of market
 demand, and hence the same fraction of market revenue, which falls as price
 is raised because of the elasticity; so no firm will raise price either. It is not so
 obvious that this is the only possible stage 2 equilibrium, at least in terms of
 payoffs, a result which has been proved (implicitly) by Allen and Hellwig
 (1986) in their detailed analysis of the Bertrand-Edgeworth game, a game

 which is exactly the second stage of the Kreps-Scheinkman game. We now
 show that this result survives our more general rationing scheme.
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 Theorem 1. Suppose that assumptions 1 (or 2) and 3 hold and that q with
 Zqk = Q is given at stage 1 of the Kreps-Scheinkman game. If demand is
 elastic at Q (i.e. Q < D(a)) then expected revenue in any Nash equilibrium of
 the stage 2 subgame following Q is iffa), i = 1,..., n

 If Q = 0, this result is immediate from the definitions. If Q > 0 it is proved
 via the following lemmas.

 Lemma 1. Suppose that assumptions 1 (or 2) and 3 hold, and that q with
 ^qk = Q > 0 is given at stage 1. Then in the following stage-2 game:
 (a) the pure strategy /?/ = F(Q) guarantees firm i a revenue of qiF(Q)
 (b) any price /?,- < F(Q) is strictly dominated for firm f, if qt > 0.

 Lemma 2. Suppose that assumptions 1 (or 2) and 3 hold and that q with
 ^qk = Q > 0 is given at stage 1. Suppose that demand is elastic at Q (i.e.
 Q < D(a). Then the pure strategies /?/ = F(Q),i = 1,... ,n are a Nash equi
 librium of the stage 2 subgame following Q.

 Remark. The essence of lemma 2 is that a Nash deviation in which a firm

 raises price from the suggested equilibrium cannot be beneficial since it earns
 the firm at most the same share of market revenue at the higher price which is
 lower because of the elasticity. The sunk cost assumption is critical here.

 Were output decisions made after stage one capacity and after stage two
 prices and demand have been realised (as in the Kreps and Scheinkman
 (1983, p. 337) suggestion) lemma 2 would cease to hold since the deviating
 firm would truncate production to within capacity and gain cost-saving
 benefits which can compensate for the revenue loss (and would compensate
 e.g. if demand was unit elastic and rationing was proportional).

 Lemma 3. Under the suppositions of lemma 2, expected revenues in any
 Nash equilibrium of the stage 2 subgame following Q are qtF(Q),i = l,...,n.

 Of course, if demand is uniformly elastic (a = 0 so D(a) = oo), then the
 conclusion of Theorem 1 applies following any first stage quantities. Thus:

 Theorem 2. Suppose that assumptions 1 (or 2) and 3 hold and that demand is
 uniformly elastic (i.e. a ? 0). Then the Kreps-Scheinkman model has the
 exact Cournot reduced form.

 For theorem 2 to provide a compelling defence of the Cournot specifi
 cation one needs to know that its assumptions are consistent with existence
 of Nash equilibrium in the Cournot model ( = perfect equilibrium in Kreps
 Scheinkman under Theorem 2's conditions). In fact relatively innocuous
 additional "convexity" and "boundary" assumptions are sufficient to guar
 antee existence of a pure strategy Cournot-Nash equilibrium, which is also
 unique if costs are symmetric. This is reported in Theorem 3, whose existence
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 argument is non-standard because of the payoff discontinuity allowed by our
 specification at 0 = 0. The discontinuity entails a failure of upper semi
 continuity so the results of Dasgupta and Maskin (1986) are not directly
 applicable. The argument used perturbs the Cournot game by insisting that
 the lowest cost firm produce at least e > 0. The perturbed game then has an
 equilibrium (by standard arguments). Letting e ? 0, it is possible to show
 that the e constraint becomes non-binding in an equilibrium of the perturbed
 game (there must be at least 2 firms for this to follow), which is then an
 equilibrium of the original game. The extra assumptions used are as follows.

 Assumption 4. lim ij/f(Q) =0 Q-+OC

 Assumption 5. \?/ : R++ ?> ?++ is concave on (0, b)

 Assumption 6. For each i ? 1, ...,n, c{ is a convex, strictly increasing func
 tion.

 In the constant elasticity example introduced earlier i?/(Q) = ?1", s > 1,
 and assumptions 4 and 5 are certainly satisfied.

 Theorem 3. Suppose that assumptions 1 (or 2) and 3-6 hold, and that de
 mand is uniformly elastic (i.e. b = oo). Then;

 (a) there exists at least one pure strategy Cournot-Nash equilibrium, and
 (b) there is a unique, pure strategy Cournot-Nash equilibrium if costs are

 symmetric (i.e. ci = c2 = ... = cn).

 It is however clear that theorem 2 in its exact form does not survive to

 situations where demand becomes inelastic eventually (a > 0). Indeed, for
 the proportional rationing case, the results of Allen and Hellwig (1986) imply
 that for any Q > D(a) the stage 2 equilibria involves non-degenerate mixed
 strategies (with supports in [F(Q),a]), precluding Theorem 1 at inelastic
 points of the demand curve and thus precluding the strong exact Cournot
 reduced form result of theorem 2. A slightly weaker result than theorem 2
 (but still strong enough that the Cournot-Nash equilibria coincide with the
 perfect equilibria of the Kreps-Scheinkman model) is available however,
 either when the range over which demand is elastic is sufficiently large, or
 when costs are sufficiently large.

 Suppose it can be shown that for firm f = 1,..., n any strategy where
 qi > q? is strictly dominated in both the Cournot and Kreps-Scheinkman
 models; truncate admissible quantities to [0, qi\ to get the truncated Cournot
 and Kreps-Scheinkman models.

 Definition. If for firm f = 1,..., n any strategy where qt > qt is strictly
 dominated in both the Cournot and Kreps-Scheinkman models then the
 truncated Kreps-Scheinkman model has the exact truncated Cournot re
 duced form if, for all q ? X[0, qf] and for all mixed strategy Nash equilibria
 (px,...,pn) of the stage 2lgame following q,
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 / Rifap) - dvip) - ci(ii) = <(#)> 1 = 1,...,?
 Jr?++

 Since removal of strictly dominated strategies will affect neither the perfect
 equilibria of the Kreps-Scheinkman model nor the Cournot-Nash equilibria,
 these two sets of equilibria will coincide if the truncated Kreps-Scheinkman

 model has the exact truncated Cournot reduced form. To establish such a

 "truncated" result we adopt parameterizations of demand and costs.

 Assumption 7. The market revenue function in terms of quantity, \\i : R++ ?>

 R++ is given by i?/(Q) = \j/(Q, a) where a > 0 is a parameter and \j/(Q) and its
 inverse demand function \j/(Q)/Q satisfy assumptions for 1 (or 2), 4 and 5

 with a = F(b) > 0.

 The effect of changing a is to leave the maximum value of xjj unchanged
 whilst changing the range of output over which demand is elastic (\j/ is non
 decreasing) to (0, ocD(a)); thus "large" a correspond to a more wide-ranging
 elasticity of demand.

 Assumption 8. For / = 1,..., n the cost function cz \R+^R+ is given by
 d(qi) = ?ci(qi) where c?, i = 1,..., n satisfy assumption 6, and where ? > 0 is
 a parameter.

 Clearly large ? means large costs. The following is proved in the ap
 pendix.

 Theorem 4. Suppose assumptions 3, 7 and 8 are satisfied. Then the truncated
 Kreps-Scheinkman model has the exact truncated Cournot reduced form if
 either a or ? is sufficiently large; in either case, there exists a pure strategy
 Cournot-Nash equilibrium which is unique if costs are symmetric.

 Remark. On the other hand fixing a and letting ? become small will even
 tually force the Cournot-Nash equilibrium to an inelastic point on the de

 mand curve. Then it is straightforward to check that the Cournot-Nash
 equilibrium ceases to be a perfect equilibrium of the Kreps-Scheinkman

 model under proportional rationing - any firm would wish to deviate in the
 second stage subgame to a price higher than F(Q) since such deviations
 provide a constant share of an increased market revenue with inelastic de
 mand and proportional rationing. And by the time the limit where ? = 0 is
 reached, the Davidson-Deneckere result emerges - the Cournot-Nash equi
 librium ceases to be a perfect equilibrium under any rationing scheme apart
 from the efficient one.

 4 Concluding remarks

 A well-known lacuna of the classic Cournot model is its failure to provide a
 rationalisation for the pricing decisions which accompany the Nash quantity
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 choices. We have shown here (inter alia) that appending a second stage
 pricing game to a first-stage quantity choice ? la Kreps-Scheinkman (1983)
 rescues the Cournot model quite generally if all costs are sunk at the first
 stage and if demand is uniformly elastic. In particular the conclusion is
 robust against choice of rationing rule. We suggest that the Cournot story is
 much more compelling in the context of markets characterised by such sunk
 cost and elastic demand features.

 Appendix

 Proof of Lemma 1. (a) This is trivial if qt = 0. Suppose qt > 0. When firms
 name the vector p with /?, = F(Q),

 Ai(q,p) > AiE{q,p) = max<  0, ote) - x>

 max<
 Pk>Pi

 Pk<Pi

 qj
 E qk
 Pk=Pi

 E qk
 Pk=Pi

 }>qi

 Hence Ri(q,p) =Piq? = q?F(Q) in any such realisation.
 (b) If Pi < F(Q),Ri(q,p) <Piq{ < ?,-F(?) if qx > 0, and (a) ensures that such
 prices are strictly dominated in the stage 2 subgame.

 Proof of Lemma 2. First note that if qt = 0, all stage 2 strategies produce an
 expected revenue of zero for firm i; thus p? = F(Q) is always a best response
 at stage 2 if q? = 0. Suppose now that pt ? F(Q) for all f = 1,... ,n and
 consider a firm where q? > 0; without loss of generality f = 1. Suppose firm 1
 deviates to a higher price, px say Let p denote the price vector with first
 component px, all others remaining at F(Q). Then, from assumption 3,
 pxAx(q,p) <p{Aip(q,p). Also piAXE(q,p) = p\A?P(q,p) -p{Ai(q,p) from
 assumption 3 and the functional forms of Ai?,Au>. Now,

 plAip(q,pl)=pl  '"?;  qk  Dip,)
 kJD(F(Q))\

 which is non-increasing in px since demand is elastic at px > p\. Also,

 Xim pxAiP{q,p) =
 Pi-^pj  i-I>*/0 *=2

 F(Q)Q

 and pxAXP(q,p) = F(Q) Q (qP, /Q) = Urn pxAXP(q,p). Thus p{A{P(q,p) =
 P\-+Pi

 P\Ax(q,p) >pxAXP (q,p) >pxAx(q,p), forpx >px. So raising/?! ?xomF(Q) to

 px cannot be beneficial for firm 1, and since lowering pi from F(Q) is clearly
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 not beneficial, pt = F(Q), i? 1,..., n must be a Nash equilibrium of the stage
 2 subgame.

 Proof of Lemma 3. For a firm with q? = 0, all stage 2 strategies produce an
 expected revenue of zero (= qiF(Q)). Moreover since prices named by such
 firms have no effect on other firm's revenues (assumption 3(ii)) there is no
 loss of generality in assuming pt = F(Q) if q? ? 0. From lemma 1 we can be
 sure that the support of any strategy of any firm in a stage 2 Nash equilib
 rium is contained in [F(Q), oo]. Consider any p where pt > F(Q), i? 1,..., n,
 and use the following notation; let pl < p2 < ... <?f denote the s(<n)
 different prices in p, and suppose pj is the price of firms in the set NJ

 (with [jNJ = {1,..., ?}) and N* (]NJ = (?),i? j) where ? qt = Q, say.
 y=l ieNJ

 Now, for i = 1,.. .,n;Ri(q,p) =pin?n(qi,Ai(q,p)) </>/min(#, AiP(q,p))

 = Pi mm < ^,max o,i-E <lk

 Pk<pt D(pk)  Dipt)
 <li

 E 9k
 Pk=Pi

 Hence, for / e NJ J = 1,..., s;

 Ri(q,p)<P>minlqhmaxh^
 n

 We now establish that aggregate revenue, Yl^M^P) cannot exceed QF(Q).

 Suppose first that Ql/D(pl) > 1. Then for i'eNl,Ri(q,p) = plD(pl) (ql/Ql)
 andRi(q,p) = 0 for i&N1; so ?/*/(?,/>) = Pl?(Pl) < Q(F(Q)> since demand
 is elastic at Q and since pl > F(Q). Suppose next that there is an integer
 r, 0 < r < s such that

 < 1 fory= l,...,r
 > 1 for j = r + 1,..., s ??W)< h=\

 Then, for i G NjJ = 1,.. .,r,R?(q,p) <pq? noting that

 '^)IQ> 1 if and only if

 l-^^/fl^^O.ForieiVr+i; A=l

 /?,(?,/?) </+ min{?,,
 h=\  P-W+l)

 = /+'  '-? e" riW ?=l

 0/
 ?' 4-1 D(p^)
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 since 1 - E &ID(]P) < 0. And for f ? NJ,j = r + 2, ...,s, Rfap) = 0 since
 j-X *=1

 1- E?*/?(^) <0wheny-l >r+l.
 A=l

 Summing, we conclude that;

 ??/(i,p) <pl& + ...+]/(/ +pr+iD(pr+[) 1=1

 + /+1Z)(/+1)

 < ?^(?)
 as it is a convex combination of plD(pl),i = l,...,r+l, each of which

 cannot exceed QF(Q) since demand is elastic at Q and /?/ > F(Q). Suppose

 finally that ? ?V^K/^) < 1 for all j = I,... ,s. Since D' < 0 this can only
 A=l

 occur if ?J1 = F(Q),h = I,... ,s and aggregate revenue is Q F(g). Thus, in

 all cases;
 n

 J2Ri(q,p) < QF(Q) i=\

 Since aggregate revenue cannot exceed QF(Q) at any price realisable in a
 stage 2 Nash equilibrium, it follows that aggregate expected revenue cannot
 exceed QF(Q) in any stage 2 Nash equilibrium. From lemma 2 we know
 there is an equilibrium in which firm f receives revenue q?F(Q), i = 1 ,...,n. If
 there was an equilibrium in which expected revenue differs from qiF(Q) for
 some f, then for some firm k expected revenue must be strictly less than
 qkF(Q). But this contradicts lemma 1, and thus completes the proof of
 lemma 3.

 Proof of Theorem 3(a). The best response problem of players f in the
 Cournot model is:

 mdixrfa) - cfa) s.t. qt > 0 (BRi)

 where n : Rn+ -> R+ is defined by rt(q) = qiF(Q). We can put an upper bound
 on the effective feasible set for (BRi) as follows. Since cz is convex and strictly
 increasing, and from assumption 4, there is a qz > 0 such that
 \?/'(qi) ? c'(qi) < ?e for all q{ > qt and for some e > 0. It follows that there
 exists <?i > qt, where \?f(q?) - cfa) < 0 for all q? > qt. Moreover
 rfa) = qtF(Q) < \j/(qi) = qiF(qi) for all qt > 0 since F is decreasing: hence
 r(qi) ? cMi) < 0 for all qt > qt and any choice of qt > qt is strictly dominated

 i-Y-2 h=\

 '-E a h=\ Dip*)
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 W?) = irr = 2F'(?) + ^"(?) < o if f"(q) < o

 by q? = O, for instance. Thus we may take the feasible set for (BR?) as [0, qt];
 we can now be sure that (BR^ has a solution if Y, <lj > 0 since r,- is then

 j#
 continuous in q? G [0,qi\. To evade the discontinuity in rt at q{ ~Yll(ij = 0>

 j#
 suppose (without loss of generality) that cj.(0) reaches a minimum over i for

 / = 1 (i.e. c[(0) < cj.(0),/ = 1,...,n), and consider the perturbed game where
 the only change is that qx is restricted to be at least s, some small s > 0 where
 s < qx. Thus consider the perturbed problem for player 1:

 maxn(q) - cx(qx) s.t. s < qx < qx (PBRX)

 To check for concavity of rt(q) note first that whenever Q > 0;

 dqj
 Also by assumption 5, \?/"(Q) = 2F'(Q) + QF"(Q) < 0. Hence rf(?)
 ^'(?) = fe - Q)F"{Q) < 0 if F,;(?) > 0, and so r?(?) < 0 also when
 F"(Q) > 0. Thus r, is concave in ^ = 1,...,?. The restriction to ^ > a > 0
 ensures that r? is continuous (in fact C2) in q,i = 1,...,?. By standard argu

 ments, the perturbed game then has at least one Nash equilibrium.
 Suppose that the perturbed game has a Nash equilibrium q in which

 qx = s and Y*qk = Q. From the first order conditions for solutions to best
 response problems we have:

 F(Q)+EF'(Q)-c\(s)<0 (1)
 and for i = 2, ...n F(Q) + q?F'{Q) - c'^qi) < 0 with equality if qx > 0 (2)

 Adding : (n - 1) F(Q) + [F{Q) + QF\Q)\ - ? cfo,) < 0 (3) 1=1

 The square bracket on the left hand side of (3) is non-negative because of
 uniform elasticity. Thus, assuming n > 1, (3) provides a finite upper bound

 for F(Q) and a positive lower bound for Q[ e.g. Q > F~l \ b=l
 in such a Nash equilibrium of the perturbed game. Consider now an infinite
 decreasing sequence of positive s values, say ev, v = 1,2,...,, where ev ? 0 as
 v ? oo, and consider the corresponding sequence of perturbed games. Sup
 pose q ? qv and Q = Qv are equilibrium values at ev with qXv = ev; suppose
 (we can take a converging subsequence if necessary) Qv ?> Q* and qv ?> q* as
 v ? oo. Since Qv is bounded away from 0, Q* > 0 and (1) gives

 F(QX + zvFf(Qx)-c\(Ev)<Q

 Hence, in the limit, F(Q*) < c\(0). Notice then that F(Q*) < c'^O) < c'^q])
 for any /.
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 Since Q* > 0, q* > 0 for some i = 2,..., n. For such f, from (2);

 F(Qr)+q*i?(Qr)-?M) = o
 And this contradicts F(?*) < c't(q*). So for some ev it must be that the Nash
 equilibria of the perturbed game have qXv > ev. Since the objective in (PBRX)
 is concave in qx ? [0, qx] it follows that qXv also solves (BRX) and hence that qv
 is a Nash equilibrium of the original, unperturbed game.

 Proof of Theorem 3(b). Let c = cx = ... = cn be the cost function. Notice
 first that we cannot have ? = 0 in a pure strategy equilibrium, since, for
 instance [\?/(Q) - c(Q)]/Q ? +oo as ? ? 0, ensuring that positive profits can
 be made. Secondly each q? must be strictly positive. Otherwise the first-order
 conditions for qt = 0 (see (2) in the proof of Theorem 3(a)), F(Q) < c'(0) and
 the first-order conditions for qt > 0 cannot be satisfied. Hence, for each
 i,F(Q) +qiF'(Q) = c'(qi), which can have only one solution in qt for any
 given Q. Thus equilibrium must be symmetric, q? = Q/n,i = l,...,n and

 F'(Q)-Q/n = c'(Q/n) (4)

 The slope of the left hand side of (4) is \{(n - l)F'(Q) + [2F'(Q) + QF"(Q)]}.
 The square bracket here is non-positive from assumption 5 and so this slope
 is everywhere strictly negative when n > 1 since F'(Q) < 0. The slope of the
 right hand of (4) is non-negative from assumption 6 and so (4) has at most
 one solution, which ensures uniqueness.

 Proof of Theorem 4. We show the result for sufficiently large a. The argu
 ment for ? is similar and left to the reader. Suppose (without loss of gen
 erality) that ? = 1. Let M = max \?/(Q) = max\j/(Q/a) - note that M > 0 and

 does not vary with a. For each f define q? uniquely (since ?/ satisfies as
 sumption 6) by Ci(qt) = M. Then for any i and q, if qt > qt,

 <(?) = qtF(Q) - ?iiqt) < qiF(Q) - M < 0,

 since q?F(Q) < Q F(Q) < M for ail Q. Also,

 nfs(q,p) = Ri(q,p) - cfa) < Rfap) - M < 0

 since Ri(q,p) < M for ail q ? R\,p ? Rn++ in the Kreps-Scheinkman model.
 It follows that strategies in (qt, oo) are strictly dominated in both the Cournot

 n

 and Kreps-Scheinkman models. Now define a* by a*D(a) ? E #/ If
 n i=X

 qi<qi,i=\,...,n and a > a* then Q = ^2qi< ctD(a) and Q corresponds to
 i=i

 a point on the demand curve where demand is elastic. Theorem 1 then proves
 the exact reduced form result.

 Finally existence follows as in Theorem 3(a), with qt replacing qt since
 n

 demand is elastic at any feasible ? = E #*> anc* uniqueness follows as in
 1=1

 Theorem 3(b) if costs are symmetric.
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