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 RAND Journal of Economics

 Vol. 22, No. 1, Spring 1991

 The impact of cyclical demand movements
 on collusive behavior

 John Haltiwanger*

 and

 Joseph E. Harrington, Jr.* *

 Recent work by Rotemberg and Saloner (1986) investigates the effect of the business cycle

 on optimal collusive pricing by specifying that demand is subject to i.i.d. shocks. An implication
 of the i.i.d. assumption is that firms' expectations on future demand are unrelated to the
 current level of demand. We put forth a model that allows for both the level of current demand
 andfirms' expectations on future demand to change over time; thus it captures two important
 properties of the business cycle. Our analysis reveals that while the gain to deviating from a

 collusive agreement is greatest during booms, firms find it most difficult to collude during
 recessions, as the forgone profits from inducing a price war are relatively low. An implication
 of this effect for pricing behavior is that at the same level of demand, price is lower when
 demand is declining than when demand is rising. Consistent with previous theoretical work,
 wefind thatfirms price countercyclically for a range of values for the discount factor. However,
 numerical simulations reveal a greater tendency for firms to price countercyclically during
 recessions than during booms.

 1. Introduction

 * How the business cycle affects collusive pricing has long been an issue of interest in
 industrial organization and macroeconomics. Related to this issue are at least two funda-

 mental questions. First, is it more difficult for firms to collude during recessions or during
 booms? Based largely upon pre-World War II case studies, it has long been believed that
 collusion is more difficult during economic downturns. This position is weakly supported
 by Suslow ( 1988); constructing a data set from many of these case studies, she found the
 probability of breakdown of a cartel to be indeed higher during recessions.1 A second issue

 * University of Maryland.
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 The authors are grateful for the helpful comments and suggestions of Tim Bresnahan, Myong Chang, Luke

 Froeb, Gregg Hess, Jim Hess, Michi Kandori, Jim Leitzel, two anonymous referees, seminar participants at Johns
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 'Additional evidence in support of the hypothesis that it is tougher to collude during recessions is provided
 by Montgomery ( 1987). He finds that cartel agreements in the transatlantic steerage trade were most often breaking
 down after the peak of a boom and prior to the trough of a recession.
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 is: What is the relationship between price movements and fluctuations in market demand?

 There have been several empirical studies along this line. In reviewing the empirical literature,

 one finds that the evidence is mixed in that there is empirical verification of both procyclical

 and countercyclical pricing.2

 In light of the either scant or mixed empirical evidence on oligopolistic pricing over

 the business cycle, it is essential to improve our understanding of the incentives faced by

 firms in setting price when demand fluctuates over time. The development of formal theories

 should lead to improved empirical testing. Toward this end, recent work by Rotemberg and

 Saloner ( 1986) explores optimal collusive pricing when demand is subject to (observable)

 i.i.d. shocks. Their analysis revealed, in contrast to the traditional view, that it is generally

 more difficult for firms to collude during booms where a boom is defined as when the level
 of market demand is high. The rationale is that the gain from cheating on a collusive

 agreement is highest when current demand is strongest. Even more striking, they found it
 may be optimal for firms to price countercylically in order to maintain the stability of the

 collusive arrangement.
 The analysis of Rotemberg and Saloner (1986) is an insightful beginning toward un-

 derstanding the relationship between collusive pricing and the business cycle. The next step
 in this line of research is to enrich the environment to allow for further properties of the
 business cycle. In particular, by specifying that demand shocks are i.i.d., the Rotemberg
 and Saloner model leaves out an important element of the business cycle that may have

 significant implications for collusive pricing. A result of the i.i.d. assumption is that firms'
 expectations on future demand are independent of current demand, and one implication
 of this is that firms never expect demand to be stronger tomorrow if it is relatively strong

 today. This is unfortunate if one is concerned with understanding the influence of the
 business cycle on pricing behavior, since "stronger demand tomorrow" is exactly what
 firms' expectations will be if they believe the economy is in an upturn. To see the potential
 sensitivity of Rotemberg and Saloner's results to the i.i.d. assumption, note that anticipations
 of future demand alter the incentives to cheat on a collusive agreement. If strong demand

 today signals strong demand tomorrow, firms would be forgoing high collusive profits in
 the immediate future (when demand is expected to be strong) by cheating today on a
 collusive agreement. Thus, it is no longer clear that higher current demand makes collusion
 more difficult when firms' expectations on future demand are related to the state of current
 demand. While the analysis of Rotemberg and Saloner has allowed for one effect of the
 business cycle-that demand changes over time-it has not taken account of an equally
 important effect: that firms' expectations on future demand also change over time.3

 This article develops a model that allows for both features of the business cycle by
 specifying that the market demand function moves cyclically over time. In this manner,
 both current demand and firms' expectations on future demand are allowed to change over

 time. Although demand movements are specified to be deterministic, the model is such

 that results are robust to allowing for (nonobservable) i.i.d. demand shocks. In that case it
 is firms' expectations on future demand that move cyclically.

 Our objective for investigating this model is twofold. First, we wish to assess the ro-
 bustness of Rotemberg and Saloner's findings when firms' expectations on future demand
 move over time. Concerning their result that it is toughest to collude during booms, it is
 important to identify the difference between a boom (or a recession) in Rotemberg and

 Saloner's framework and in our framework. Since Rotemberg and Saloner only allow for
 the level of demand to change over time, a boom (recession) is when the level of demand

 2 See, for example, Bils ( 1987a), Domowitz, Hubbard, and Petersen ( 1986a, 1986b, 1987), and Rotemberg
 and Saloner ( 1986).

 3 See Zarnowitz ( 1985) for evidence of the serial correlation exhibited in business cycles that motivates this
 discussion.

This content downloaded from 193.49.169.59 on Fri, 03 Jan 2020 13:12:05 UTC
All use subject to https://about.jstor.org/terms



 HALTIWANGER AND HARRINGTON / 91

 is abnormally high (low). In contrast, since our framework also allows the expected direction

 of demand to change over time, a boom (recession) is when demand is increasing (decreas-
 ing). Our formulation is consistent with the standard (e.g., NBER reference cycle) chronology
 of booms and recessions. Our analysis shows that the most difficult point of the cycle for
 firms to collude is not necessarily when demand is high but rather when demand is falling.

 Hence, in support of the traditional viewpoint that emerged from the industry case studies,
 firms find it toughest to collude during recessions. While this finding of Rotemberg and
 Saloner is found to be sensitive to the i.i.d. assumption, their result that countercyclical
 pricing is optimal for some values of the discount factor is strongly supported. Independent
 work by Kandori ( 1988 ) also supports the robustness of countercyclical pricing and will be
 discussed later in the article.

 A second reason for exploring this model is that the preceding theoretical and empirical
 literature on pricing over the business cycle has focused solely upon very general properties:
 specifically, whether pricing is pro- or countercyclical. Our study expands the range of the
 analysis to consider asymmetries in collusive pricing: specifically, properties that depend
 on whether the market is in an upturn or a downturn. Analytically we find that prices are
 lower when demand is declining than when demand is rising, ceteris paribus, while numerical
 simulations suggest that firms are more likely to price countercyclically during downturns
 than during upturns. These results are consistent with it being more difficult for firms to
 collude during recessions.

 The plan of the article is as follows. After we present the model in Section 2, in Sec-
 tion 3 we set out a predictive theory of collusive pricing and derive properties of the collusive
 price and profit path when demand is subject to cyclical movements. This analysis includes
 a characterization of when it is most difficult for firms to collude and the resulting implications
 for price and profit behavior over the cycle. Numerical simulations of the optimal collusive
 pricing path are provided in Section 4 to bring additional insight to the analysis. We offer
 concluding remarks in Section 5. All proofs are relegated to the Appendix.

 2. The model

 U Consider an industry with n firms where n 2 2 and finite. Firms are infinitely lived and
 are modelled as interacting in a Bertrand price game in each period. Hence, in each period
 firms will simultaneously choose price. Symmetry is assumed as firms offer homogeneous
 products and have identical cost functions of the form C(q) = cq, where c 2 0. Market
 demand in period t is represented by D(P; t) and is specified to have the following properties.

 Assumption 1. D(.; t): ,+ ,+ is a continuous, bounded function, Vt.

 Assumption 2. There exists P(t) > c such that D(P) = 0 if and only if P > P(t), Vt.

 Assumption 3. D( *; t) is decreasing in P VP E [0, P(t)], Vt.

 As is standard, we assume market demand is equally divided among the lowest-priced firms.

 Finally, we assume that the joint profit function is strictly quasi-concave in price.

 Assumption 4. (P - c)D(P; t) is strictly quasi-concave in P VP E [0, P(t)], Vt.

 An implication of Assumption 4 is that there exists a unique monopoly price Pm(t).
 To investigate the impact of cyclical fluctuations on collusive pricing, a particular

 structure must be placed upon the intertemporal movement of market demand. For this
 purpose, define t as the number of periods in one cycle, that is, the minimum number of
 periods such that the time path of demand begins to repeat itself. We assume t to be finite.
 The market demand function then follows the time path in ( 1).
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 D(P; 1) if tE{l,t+ 1,2t+ 1,...},

 DD(P;2) if tE {2,t+2,2t+2,. }2,-1

 D(P; t) if tE{t,2t,3t, ...}

 The only restriction we will place on this cycle is that it be single-peaked. That is, starting
 at period 1 of the cycle, demand is assumed to shift out over time up to some period t,
 where t E { 2, ..., f }, at which point demand will shift back in until it reaches its mini-
 mum level of D(P; 1) at t + 1. Letting D(P; t') > D(P; t") denote P(t') > P(t") and
 D(P; t') > D(P; t") VP E (0, P(t')), this single-peaked condition is embodied in Assump-
 tion 5.4

 Assumption 5. D(P; 1) < D(P; 2) < ... << D(P; t) D(P; t + 1) > ... D(P; t)
 > D(P; 1).

 A direct implication of Assumption 5 is that the industry profit function moves in the same
 direction as market demand over time. The industry profit function shifts up from period 1
 to period t, reaches its peak at t, and then shifts down from period t + 1 to t + 1.5

 Other than the restriction that the cycle be single-peaked, no conditions are placed
 upon the demand cycle. The length of a boom can be greater, the same, or smaller than
 the length of a recession. Similarly, the speed at which the market recovers from a recession
 can be greater, the same, or smaller than the speed at which it moves from a boom into a
 recession. It is important to note that while the motivation for our assumptions on demand
 is the business cycle, our model is also applicable to other sources of cyclical fluctuations,
 including seasonal cycles and fads.

 Given this demand and cost structure, in each period firms make simultaneous price
 decisions and supply so as to meet demand. (As long as pt> c, which will indeed be true
 in equilibrium, this is an optimal supply response for firm i.) With an infinite horizon, a
 strategy for firm i is an infinite sequence of action functions, { S' } I l, where the period t
 action function maps from the set of possible histories to the game (a history being the past
 prices of the n firms) into the set of possible prices that firm i can choose. The payoff
 function for firm i is the sum of discounted profits where the common discount factor is
 3E(0, 1).

 In concluding the description of our model, let us briefly discuss two important as-
 sumptions. These are that market demand moves deterministically and that market structure
 is exogenously fixed. With respect to the latter assumption, we are implicitly assuming that
 cyclical fluctuations are not so severe as to induce entry or exit. As noted by Scherer ( 1980 ),
 this assumption is reasonable for many manufacturing industries.6 Those industries for

 4 This assumed pattern of demand can be motivated as being consistent with either endogenous business
 cycle models or seasonal cycle models. It also provides insight into effects that would be present if demand is
 stochastic but serially correlated. In this regard, the particular patterns of demand that we consider are, in general,
 not consistent with linear, first-order serial correlation models but rather with higher-order and potentially nonlinear
 serial correlation processes.

 5 Actually, the crucial assumption for our ensuing results is that the industry profit function, rather than the

 market demand function, moves in a cyclical manner. For expositional purposes, we found it easier to assume
 cyclical movements in market demand. An alternative way to generate such a pattern in the profit function is to
 assume that demand is fixed and marginal cost is countercyclical-though such an assumption appears contrary
 to the empirical findings of Bils ( 1987a). On the other hand, one could assume that marginal cost is procyclical
 but also that market demand is sufficiently procyclical so that the profit function is procyclical.

 6 Concerning the assumption that demand fluctuations are not so severe as to cause changes in industry
 structure, let us quote Scherer ( 1980):
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 which entry and exit is an important cyclical phenomenon, one will have to adapt this
 model to allow market structure to be endogenous.7 With regard to the assumption that
 movements in market demand are fully anticipated, it is significant to note that our model
 is equivalent to one in which demand follows a cyclical pattern but is also subject to non-
 observable i.i.d. shocks. In that case, firms are uncertain of future demand but anticipate
 the cyclical movement in the probability distribution over demand. When nonobservable

 i.i.d. shocks are allowed, D(P; t) is then interpreted as firms' expectation'of market demand
 in period t, given a price P. With this interpretation and risk-neutral firms, the ensuing
 analysis applies.

 3. Prices and profits over the business cycle

 * This section puts forth a predictive theory of collusive pricing and derives basic properties
 of the collusive price and profit path when the market demand function is subject to cyclic
 fluctuations. We then consider the issue of when during the business cycle it is most difficult
 for firms to collude, and we derive implications for the behavior of prices over the cycle.

 o Theory of collusive pricing. In order to have a predictive theory of collusive pricing, we
 use the commonly employed specification that the n (identical) firms select a symmetric
 price path so as to maximize their joint payoffs, subject to the constraint that the price path
 be supportable by a subgame perfect equilibrium.

 The first step is to characterize the set of price paths that are supportable by subgame
 perfect equilibria. Since a grim trigger strategy profile results in a deviator receiving its
 minimax payoff of zero, it represents a most severe punishment strategy equilibrium. There-
 fore, a price path is supportable by subgame perfect equilibria if and only if it is supportable

 by grim trigger strategies. Given a collusive price path {P(t)}1,1 E II (c, Pm(t)], the
 1=1

 associated profile of grim trigger strategies is of the form

 S! = P(1),

 S(= P(t) if Pj= P(r) Vr FE {1, ,t - 1}, VjE{ 1,..., n},
 c otherwise; (2)

 t E { 2, 3, . . .},iE{1, ,n}.

 This strategy profile calls for each firm to initially price at the collusive level of P( 1) in
 period 1 and to continue to price according to { P(t) } t as long as no firm has deviated

 It must be noted too that major bankruptcies are relatively rare. In 1975, at the trough of an unusually severe
 general business recession, there were 1,645 recorded manufacturing business failures, out of a total population of
 450,000 incorporated and unincorporated manufacturing business enterprises. Nearly half of the failures had liabilities
 of less than $100,000, and the total liabilities of failing manufacturers approximated $1 billion.

 Note, however, that more recent evidence (see, for example, Dunne, Roberts, and Samuelson ( 1989) and Davis
 and Haltiwanger (forthcoming)) reveals tremendous gross turnover ofjobs, of which a substantial fraction is accounted
 for by plant entry and exit. Further, Davis and Haltiwanger (forthcoming) present evidence that gross job destruction
 due to plant exit rises substantially during business cycle slumps.

 7 For the case when firms do not collude, Chatterjee and Cooper ( 1988) examine industry behavior over a
 business cycle when market structure is endogenous. For the case when firms collude but demand is fixed over
 time, market structure is endogenously derived in MacLeod ( 1987), Mookherjee and Ray ( 1987), Paul ( 1988),
 and Harrington ( 1989).
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 from this path. If a firm does deviate, all firms revert to their single-period Nash equilibrium
 strategy of pricing at unit cost.8

 It is straightforward to show that necessary and sufficient conditions for the strategy
 profile in (2) to form a subgame perfect equilibrium are

 00

 L(t; {P(-r)}I 01, 6) z 6 [(P(r) - c)(D(P(r); r)/n)]
 7-=t+I

 2 (n - l)(P(t) - c)(D(P(t); t)/n) G(t; {P(r)}J?=1), Vt > 1. (3)

 L(t; {P( r) } 0. 1, 6) is the discounted future loss from deviating in period t from the collusive
 price path, and it represents forgone future collusive profits. Since the optimal deviation
 policy in period t is to slightly undercut the collusive price P(t) (and this results in an

 increase of (n - 1 )(D(P(t); t)/n) in the deviator's demand), G(t; {P(r) }7= I) is the one-
 time gain from cheating. Defining A( 6) to be the set of price paths that are supportable by
 subgame perfect equilibria, it follows from (3) that

 00

 A(6) { {P( r) } r=,I E J1 [c, Pm(-r)] I L(t; { P( r)} T1 6)

 2 G(t; {P(r)} I), Vt ? I}- (4)

 The optimization problem faced by n colluding firms is stated in Theorem 1. Theo-
 rem 1 shows that there always exists a solution to it.

 Theorem 1. V6 E (O, 1), there exists {P*( t; 6) such that

 00

 b 6t[(P*(t; 6) - c)(D(P*(t; 6); t)/n)]
 t=1

 00

 - max{P(T)}_,(=(6) b 6t[(P(t) - c)(D(P(t); t)/n)]. (5)
 t=1

 Proof See the Appendix.

 EJ The cyclic properties of prices. Our first two results are standard. Theorem 2 shows
 that the joint profit-maximizing price path is sustainable if and only if the discount factor
 is sufficiently high. Theorem 3 shows that firms must price at the competitive level when
 the discount factor is sufficiently low.

 Theorem 2. There exists 3 E ((n - 1)/n, 1 ) such that {P*(t; a)},2 = {Pm(t)}t= if and
 only if 6 E [6, 1).

 Proof. See the Appendix.

 By Theorem 2, we know that when the discount factor is sufficiently high, the collusive
 price path will be procyclical if the intertemporal movement in market demand is such that
 the unconstrained joint profit-maximizing price path is procyclical. If instead Pm(t) is coun-
 tercyclical, then, when the discount factor is sufficiently high, firms are observed to price
 countercyclically. This latter possibility has been pointed out by Bils ( 1987b), who shows

 8 For ease of analysis, we focus upon infinite punishments. All results go through if instead punishment entails
 reversion to marginal cost pricing for T cycles, where T is finite.
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 that Pm(t) is countercyclical if demand during boom periods is sufficiently elastic so that
 firms optimally reduce price in response to an upward shift in demand.9

 Theorem 3. If 6 E (O, ((n - 1)/n)), then P*(t) = c Vt.

 Proof See the Appendix.

 We have a more interesting analysis when the discount factor falls in an intermediate

 range: 6 E [((n - 1)/n), 6). To understand how the optimal collusive price path is determined
 in that case, let us pursue the thought experiment of lowering 6 from &. When 6 is reduced

 slightly below 5, there will be some point of the cycle, which we will denote t*, such that
 Pm(t) is sustainable at all points of the cycle except t*. Since there is an incentive to deviate
 at t* if Pr(t*) is the collusive price, P*(t*) must be less than Pr(t*) if cheating is to be

 made unprofitable. If at this lower price Pm(t) is still sustainable at the other t- 1 points,
 then P*(t) equals Pm(t) for all these points. The reason is as follows. Suppose firms set
 price below Pm(to) for some to E { { 1, ... , t} - { t* } }. Since profits at t0 would be lower,
 this could only be optimal if it reduced the incentive to deviate at t* so that price (and
 profits) at t* could be raised. However, just the contrary occurs. Since profits are lower at

 to, the loss to cheating at other points of the cycle is reduced so that there is a greater
 incentive to deviate at t*. It follows that it is optimal to set price at Pm(t) whenever possible.
 As 6 is reduced further, price will eventually have to be set below the joint profit-maximizing

 level, not only at t* but also at additional points. However, at those points for which the
 joint profit-maximizing level is still sustainable, firms will optimally set price at that level
 according to the argument given above. Eventually, when 6 is low enough, P*( t) < Pm(t)
 foralltE{1,...,t}.

 As described above, when 6 is reduced below 8, the collusive price must be set below
 the joint profit-maximizing price at some point of the cycle. Theorem 4 shows that this
 point must be when demand is expected to fall.

 Theorem 4. There exists 6 8 (((n - 1)/n), 5) such that there exists t* E {t, ..., t} such
 thatP*(t*) <Pm(t*)andP*(t) = Pm(t)VtE {{1,.. . t} - {t* } } VE [6, 6). Furthermore,
 P*(t*) < Pm(t*) VI E (0, 6).

 Proof. See the Appendix.

 The method of proof of Theorem 4 is to show that for any point at which demand is
 rising (that is, t 8 { 1, ..., t- 1 } ), one can find a point at which demand is falling and
 that yields at least as high a one-time gain from cheating. The loss from cheating is higher
 at the point for which demand is rising, since, ceteris paribus, collusive profits over the
 immediate future are greater compared to when demand is falling. It follows that the incentive
 compatibility constraint is more likely to be binding at the point at which demand is falling
 than at the point at which demand is rising. Therefore, as we reduce 6 below 6, the optimal
 collusive price will have to be set below the joint profit-maximizing price during a recessionary
 period rather than a boom period.'0

 If we define the toughest point of the cycle for firms to collude to be that point at which
 it is most difficult to sustain the joint profit-maximizing price, then Theorem 4 shows that
 the toughest point is during a recession. Intuitively, when demand is rising during a boom,

 9 To provide an example in which Pm(t) is countercyclical, consider the following two-point cycle. Let the
 market demand function during boom periods be D(P) = Pa, where a E (1, 2), and during bust periods let
 it be D(P) = I - P. Note that P-a > I - P VP > 0. Given that the monopoly price during boom periods is

 [(a/(a -I ))c] and during bust periods is 1(1 + c)/2], it is straightforward to show that P'(1) is countercyclical
 if and only if c < [(a - 1)/2(2 - a)].

 1' Using a specific functional form for the deterministic business cycle, this result was derived independently
 by Montgomery (1988).
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 firms would expect to lose large profits in the immediate future if they were to induce a

 price war. Thus, firms have less to lose from undercutting the collusive price during a

 recession, so there is a greater incentive to deviate. To offset this incentive, price must be

 lowered. This result is to be contrasted with the finding of Rotemberg and Saloner ( 1986)

 that it is tougher to collude during booms. We shall discuss these two results later in this

 section.

 While one might hope to be able to say more about the toughest point of the cycle for

 collusion, it is not possible given the general class of cycles being considered. For any

 t E { t,... , t }, one can always find a time path of demand consistent with our assumptions

 such that t* = t (see Haltiwanger and Harrington ( 1987)). It is then possible for the toughest

 point to be the peak of a boom or the last point before the trough of a recession or any
 point between the two.

 Depending on where the discount factor lies in the interval [(n - 1)/n, 8), the optimal
 collusive price path can have quite distinct properties. Since P*(t) = Pm(t) for all t when
 6 2 (, it follows by continuity that if 6 is less than but close to (, then the price path is
 procyclical (when Pm(t) is procyclical). However, when 6 is close to ((n - 1)/n), firms
 optimally price countercyclically. This is shown in Theorem 5.

 Theorem 5. There exists 6 E ((n 1)/n, () such that

 P*(1; 6)>P*(2;6)> ...>P*(t; 6)<P*(t+ 1;6)< ... <P*(t; 6)

 <P*( 1; 6)VbE[(n- 1)/n,().

 Proof: See the Appendix.

 In proving Theorem 5, we first show that when 6 = ((n - 1)/n), the only sustainable
 collusive price paths are those that result in firm profits being flat over the cycle. In order
 to achieve this profit pattern, the stronger the demand, the lower the price that firms must
 set. Hence, we observe countercyclical pricing. A continuity argument implies that firms
 price countercyclically for all discount factors in the interval [(n - 1)/n, ().

 That colluding firms optimally price countercyclically for some discount factors was

 originally derived by Rotemberg and Saloner (1986). While their model is quite distinct
 from ours, the forces responsible for this result are very much the same, in that when the
 discount factor is lowered, the price path must be set so as to reduce the fluctuations in
 industry profits. When industry profits fluctuate greatly, there is a relatively strong incentive

 to cheat in those periods for which profits are high, as the gain to cheating is high. As a
 result, when the discount factor is relatively low, the only sustainable price paths are those

 in which the fluctuations in profits are kept to a minimum. For this to be achieved, price

 must be set relatively high when demand is weak and relatively low when demand is strong

 so that firms price countercyclically. More evidence of the robustness of countercyclical
 pricing is found in the work of Kandori ( 1988 ). He extends the analysis of Rotemberg and

 Saloner ( 1986) to the case of serially correlated shocks and shows that when 6 is near

 ((n - 1)/ n), firms price countercyclically. One is then led to conclude that Rotemberg and
 Saloner's finding-over a range of values for the discount factor, colluding firms price
 countercyclically-is quite robust to the way in which demand fluctuations are modelled.

 0 The cyclic properties of profits. From the preceding analysis, one concludes that the
 collusive price path can take many different forms. If the unconstrained joint profit-maxi-
 mizing price path is procyclical, the collusive price path can be procyclical (if 6 is sufficiently

 high) or countercyclical (if 6 is in the intermediate range [(n - 1)/n, 0)). In contrast,
 general properties can be derived for the time path of profits. Theorem 6 shows that
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 the collusive profit path is always single-peaked, with the peak occurring during the boom.

 ir*( t) is defined to be the equilibrium level of industry profits:

 lr*(t) (P*(t; 6) - c)D(P*(t; 6); t).

 Theorem 6. V E((n- )/n, 1),3tE{2,...,t} such that

 7j*( 1) < < -X*(t) > ... > -*(t) > 7r*( 1) and

 7r*( t) = (Pm(t) -c)D(Pm(t); t) Vt E- { 1I .. t- }.

 Proof: See the Appendix.

 According to Theorem 6, the industry earns monopoly profits during the early part of

 a boom, so that profits are rising. Eventually profits must decline, and once they do they
 will continue to decline over the remainder of the cycle. Industry profits weakly lead the

 cycle and thus decline throughout a recession.
 Theorem 6 is a powerful result in that it provides a general property of the time path

 of profits in collusive industries. Intuitively, as the recession approaches, firms find it in-
 creasingly difficult to collude because the forgone profits from starting a price war diminish
 as the time at which demand is expected to fall grows nearer. To offset this effect, the
 collusive price must be lowered. Furthermore, it is lowered to such a degree that profits can

 begin to decline before the peak of the boom even though the market demand function is
 still shifting out. When the recession finally hits, profits continue to fall as the market
 demand function is shifting in, and price must still be set at a relatively low level because
 the incentive to cheat is still relatively great. As a result, we find that industry profits weakly
 lead the cycle in collusive industries. This result provides a testable implication of collusion,
 as industry profits always move with the cycle in noncollusive industries.

 O Prices in booms versus recessions. The preceding literature has focused upon properties

 of collusive pricing that are stable over the business cycle. In this subsection, we shall consider
 systematic effects of cyclic fluctuations on collusive pricing that change over the cycle. In
 light of our finding that firms find it most difficult to collude when demand is falling, we
 are particularly interested in determining whether the collusive price path differs system-
 atically between recessions and booms.

 Theorem 7 shows, controlling for the market demand function, that the collusive price
 during a boom is always at least as great as the collusive price during a recession.

 Theorem 7. If D(P; t') = D(P; t") VP ? 0, where t' < t < t", then: (i) P*(t'; 5)
 > P*(t"; 6) Vb e (0, 1); and (ii) if P*(t"; 3) < Pm(t"), then P*(t'; 6) > P*(t"; 3) V6
 E [(n - 1 )/n, 6).

 ProofJ See the Appendix.

 Theorem 7 is a direct implication of the fact that optimal collusive profits weakly lead

 the business cycle and decline throughout a recession (see Theorem 6). This implies that
 if the market demand function in periods t' and t" is the same, and if t' is a boom period
 and t" is a recessionary period, then profits must be at least as great at t' as at t", which
 means that price must be at least as great at t' as at t". Intuitively, if the demand functions
 at two points of the cycle are the same, then the gain to cheating will be the same for any
 given price. However, if demand is rising at one point and falling at the other point, the
 forgone collusive profits from cheating are lower for the latter. To offset the weaker pun-
 ishment for cheating, firms must set a lower price when demand is falling.

 Theorem 4 showed that it is most difficult to sustain the joint profit-maximizing price
 when demand is falling. Theorem 7 showed that price is lower when demand is falling than
 when demand is rising, ceterispanibus. These two results support the hypothesis that collusion
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 is more difficult during a recession than during a boom. This is to be contrasted with the
 finding of Rotemberg and Saloner (1986). Their analysis revealed that firms find it most

 difficult to collude when the level of market demand is high. In contrast to our model,
 Rotemberg and Saloner assumed that demand is subject to (observable) i.i.d. shocks, an
 important implication of which is that future demand is unrelated to current demand. As

 a result, the discounted loss from cheating is independent of the level of current demand.

 Given that the gain from cheating is strictly increasing in the level of current demand,
 Rotemberg and Saloner found that it is more difficult for firms to collude when demand is
 strong. Our analysis reveals that this finding is quite sensitive to the assumption that future
 demand is unrelated to current demand. An important factor influencing the incentive to
 cheat is the projected future path of demand. During a recession, the demand function is
 shifting in, so the forgone collusive profits over the near future from cheating are anticipated
 by firms to be relatively low. That is, firms expect collusive profits to be low in the near
 future, so the cost of inducing a price war is relatively low. By the same logic, when demand
 is shifting out during a boom, firms anticipate losing large collusive profits if they undercut
 the collusive price. As a result, the cost to cheating is greater when demand is rising, while
 the gain to cheating is greater the higher the current demand. Thus, fixing the current
 demand function, there is a greater incentive to deviate during a recession. We expect that
 the incentive to cheat would be particularly strong during the early stages of a recession as
 demand is still relatively high, so that the gain to cheating is great, and as demand is falling,
 so that the cost to cheating is relatively low. The implication of this incentive for pricing
 behavior is that prices must be set lower during recessions than during booms.

 In summary, the analysis of Rotemberg and Saloner ( 1986) explores the relationship
 between the level of demand and the difficulty of collusion, while the analysis of this article
 explores the relationship between the level and direction of demand and the difficulty of
 collusion. Once allowing for this second factor, firms find it most difficult to collude when
 demand is declining, and this results in systematically lower prices during recessions than
 during booms.

 4. Numerical simulations

 * Using the optimal collusive pricing strategy identified in Theorem 1, we parameterized
 the model and conducted numerical simulations, which are presented in this section. Spe-
 cifically, we assumed D(P; t) = a, - 400P, and c = 0. An eight-point cycle is specified in
 which the demand intercept a, varies over the cycle. Two different patterns of demand are
 examined, as noted in the figures." We consider variations in the discount factor over the
 range [(n - I)/n, 5] and also variations in n for a given discount factor.'2

 Figures 1 and 2 report the behavior of prices and profits for the case of n = 3 and
 Pattern 1 demand. For this demand pattern, the toughest point to collude is the peak. For

 " We have considered numerous alternative patterns of demand, and the results are very similar to
 those reported here. For particular symmetric demand patterns (as in Figures 1 and 2), the toughest point to
 collude is the peak. In contrast, for demand patterns that involve sufficiently rapid rates of change of demand
 in the midst of a recession, the toughest point will be other than the peak. Note in this regard that it is possible
 for the toughest point to collude to be other than the peak, even if the demand pattern is symmetric (e.g., if
 a, = {100, 101, 102, 199, 200, 199, 102, 101 } and n = 3, then the toughest point to collude is period 6).

 2 The range of critical discount factors examined in the figures is for the most part quite low relative to the
 economically meaningful range. This is primarily the consequence of the use of infinite punishments. We maintain
 the assumption of infinite punishments in this section in order to maintain consistency with the analytical analysis
 (and much of the literature). In numerical simulations not reported here, we have investigated the impact of
 allowing for finite punishments. The qualitative nature of the results is quite similar to those reported here, but the
 range of critical discount factors falls more readily into the economically meaningful range.
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 FIGURE 1

 CARTEL PRICE BEHAVIOR OVER THE CYCLE
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 * Pattern 1 demand is at= {100, 125, 150, 175, 200, 175, 150, 125).

 6 > 6 Figures 1 and 2 indicate that both prices and profits are strongly procyclical, in
 accordance with the pattern of monopoly prices and profits. However, as 6 falls just below
 6, it is the price at the peak that must be reduced in order to sustain cooperation. As 6 falls
 further, prices for other periods must be reduced as well to sustain cooperation. Profits
 remain single-peaked, with the peak occurring during the boom, but they become increasingly

 FIGURE 2

 CARTEL PROFIT BEHAVIOR OVER THE CYCLE
 Pattern 1 n=3 ,
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 * Pattem 1 demand is at = {100, 125, 150, 175,200, 175, 150, 125).
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 FIGURE 3

 CARTEL PRICE BEHAVIOR OVER THE CYCLE
 Pattern 2^ n= 3
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 * Pattern 2 demand is at= {100, 125, 150, 175, 200, 190, 180, 1 10).

 flatter. Observe that it is the prices during the downturn that are reduced prior to the prices
 during the upturn. This asymmetry in the pattern of price reduction, even though demand
 is symmetric, illustrates the implications of Theorem 7. Observe further that for any discount
 factor, the number of periods in which price is increasing in the level of demand is always
 greater for booms than for recessions. This asymmetry reveals a general tendency for pricing
 patterns to be procyclical during booms and countercyclical during recessions.

 Figures 3 and 4 examine the behavior of prices and profits for Pattern 2 demand and

 n = 3. Observe that as 6 falls below 6, it is period 7 for which prices must be reduced first
 in order to sustain cooperation (i.e., period 7 is the toughest point to collude). This indicates
 that price reductions to sustain cooperation (what might be observationally interpreted as
 price wars) can be quite prevalent during recessions and in fact during several periods after

 a downturn has occurred. Observe further that for all ranges of 6, price is single-peaked
 during the boom. In contrast, for 6 in the range .71 to .75, observe that price initially falls,
 then rises, and then falls again during the recession. This reveals a general tendency in this
 setting that pricing is single-peaked during booms but may be multipeaked during re-
 cessions. 3

 A key parameter in this process is the number of firms. Figures 5 and 6 examine the
 optimal collusive price and profit patterns as n varies. In these simulations, we use Pat-
 tern 2 demand and let 6 = 6/7. These simulations reveal that as n becomes sufficiently
 high, the unconstrained joint profit-maximizing price path is not supportable, and predicted
 price behavior becomes less procyclical and more asymmetric. That is, over this range price
 is positively related to the level of demand when demand is rising but negatively related to
 the level of demand when demand is falling.

 Overall, these numerical simulations illustrate two key findings. First, they illustrate

 13 It can be formally demonstrated that prices will be single-peaked during booms (periods of rising demand)
 but can be multipeaked during recessions (periods of declining demand).
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 FIGURE 4

 CARTEL PROFIT BEHAVIOR OVER THE CYCLE
 Pattern 2- n=3
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 * Pattem 2 demand is at = {100, 125,150,175,200,190,180, 110).

 our analytical results that the toughest point to collude is during a recession and, accordingly,
 that price reductions to sustain collusion are more likely during recessions than booms.
 Second, they illustrate the important resulting implication of a greater tendency for price
 to be positively related to the level of demand during booms than during recessions.

 FIGURE 5

 CARTEL PRICE BEHAVIOR OVER THE CYCLE
 Pattern 2 6 = 6/7
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 *--Pattem 2 demand is at={100, 125, 150, 175, 200, 190, 180, 110).
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 FIGURE 6

 CARTEL PROFIT BEHAVIOR OVER THE CYCLE
 Pattern 2 6 = 6/7
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 * Pattern 2 demand is at ={100, 125, 150,175, 200,190,180, 1 10).

 5. Concluding remarks

 * This article has investigated the impact of cyclical movements in market demand on
 collusive pricing. Two key features to cyclic fluctuations are identified. First, the gain to
 deviation from the established pricing rule varies over the cycle and is highest when demand
 is strongest. Second, the discounted loss from such a deviation is also found to vary over
 the cycle and is lowest during a recession as demand is anticipated to be falling in the
 immediate future. While the former feature was allowed for in the model of Rotemberg
 and Saloner ( 1986), the latter was not. Thus, we found that the toughest time for firms to
 collude is during a period of falling demand, i.e., a recession, as the forgone profits from
 deviation are relatively low compared to the current gain.

 The finding that the toughest point to collude is during a recession yields interesting
 predictions regarding collusive pricing behavior over the cycle. First, the current collusive

 price is not just a function of current demand but also of firm's expectations on future

 demand. This insight allows us to identify important potential asymmetries in collusive
 pricing behavior across booms and recessions. In particular, we find that for the same level

 of demand, the collusive price will always be lower during periods of falling demand than
 during periods of rising demand. This general asymmetric pattern yields the possibility that
 price may be procyclical during booms and countercyclical during recessions.

 These predictions on pricing behavior are in principle testable and provide new guidance
 with respect to the specification of empirical studies of cyclical variation in price-cost margins.

 Existing studies of the latter typically focus on the relationship between a change in price
 (or the price-cost margin) and a contemporaneous change in demand (proxies that have
 been used include GNP, capacity utilization, and the aggregate unemployment rate). In

 addition to current demand, our analysis adds the projected level of future demand as a
 determinant of the intertemporal pricing path. Further, the potential asymmetries in the
 response of price to the level of demand across booms and slumps that we have identified

 point to empirical specifications that incorporate and test for such asymmetries.
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 Appendix

 E Proofs of Theorems 1 through 7 follow.

 Proof of Theorem 1. Since (P - c)D(P; t) is bounded in P Vt and 6 E (0, 1), the payoff function

 co

 6t= (P(t) - c)(D(P(t); t)1n)]

 is defined for all { P(r) } =. Furthermore, it is continuous in { P(r) } = by the continuity of the market demand

 function (Assumption 1). Next we want to show that A(6) is a nonempty compact space. First note that A(a)

 is a subset of II [c, P(t)]. Since P(t) is bounded Vt, then [c, P(t)], being a closed and bounded subset of R,

 is compact. By Tychonoff's product theorem, H1 [ c, P(t)] is then compact. Given that both L(t; { P(r) } 1, 6)
 '-I

 and G(t; {P(r)}.JO) are continuous in {P(r)}OJ, one can show that A(a) is a closed set. Since A(a) is a
 closed subset of a compact space, then A(6) is compact. Finally, A(6) is nonempty as {cc} . E A(S). Since

 (P*(t; 6)1},2 is then the maximum of a continuous function over a nonempty compact space, {P*(t; b) },=
 exists VS E (0, 1). Q.E.D.

 Proof of Theorem 2. Letting 7rm(t) (Pm(t) - c)D(Pm(t); t), the subgame perfect equilibrium conditions (as

 expressed in (3)) take the following form when the collusive price path is the joint profit maximum.

 L(t; 6)- L(t; { Pm(r)} i, 6) = (1/(1 - 6))[6( 7rm(t + 1)/n) + 62(m7r(t + 2)/n) +

 + 6 7(irm(t)/n) + 5f1+ (7rm(l)/n) + . b.7. + 6(rm(t)/n)]

 2 (n - 1)(irm(t)/n) = G(t; {Pm((r) }J -.oj) G(t), t E {1, }. (Al)

 First note that L(t; 0) = 0 < G(t), lim6b.. L(t; 6) = +oo > G(t), and OL(t; 6)l0b > 0 = OG(t)/06. By the continuity
 of L(t; 6) in 6, there exists 6(t) E (0, 1 ) such that L(t; 6) ? G(t) iff6 2 6(t). Hence, the price path {Pm(t)}tI is
 a subgame perfect equilibrium outcome iff 6 2 = max {I ( 1 ), . . .(, (t) }.

 Since 6(t) < 1 Vt E { 1, . . ., then 6 < 1. To complete the proof of Theorem 2, we have only to show
 that 6 > ((n - 1)/n). Since 7rm(t) > 7rm(t) Vt E {(1, . t}- {t}}, then (6/(1 - b))[7rm(t)/n] > L(t; 6).
 Given that (6/(1 - 6))[7rm(t)/n] = (n - 1)[7rm(ti/n] for 6 = ((n - 1)/n), then by (Al), L(t; (n - 1)/n))
 < (n-1)[7rm(t)/n]. Therefore, 6(t) > ((n - 1)/n), which implies a > ((n - 1)/n). Q.E.D.

 Proof of Theorem 3. Define 7r*( t) (P*( t; 6) - c)D(P*( t; 6); t). We know there exists to E { 1. t} such that
 7r*( tO) ? r*( t) Vt E {C1. t}. By the conditions for subgame perfection in (3) and the definition of

 {P*( T))} O-=, it follows that

 L(tO; { P*( r)} , 6) 2 ((n - I)/ln)7r*(tO). (A2)

 Since 7r*( t) 2 7r*(t) Vt, then (6/( 1 - b))(7r*(t0)/n) exceeds the left-hand side of (A2). Therefore, a neces-
 sary condition for (A2) to be true is that (6/(1 - b))(7r*(to)/n) 2 ((n - 1)/n)7r*(to), which is equivalent to
 6 2 ((n - 1)/n) when 7r*(to) > 0. Hence, if 6 < ((n - 1)/n), then (A2) holds if and only if7r*(to) = 0. Since
 7r*( to) 2 w*( t) Vt then 7r*( to) = 0 implies that 7r*( t) = 0 Vt so that P*( t) = c Vt. Q.E.D.

 Proof of Theorem 4. It is straightforward to show that there exists S E (((n - 1)/n), 5) such that there exists
 t* E {1, t} such that P*(t*) < Pm(t*) and P*(t) = Pm(t) Vt E {{1, t} - {t*}} V E [5, 5) and
 P*( t*) < P(t*) VS E (0, O). Furthermore, t* is defined by 6 = 5(t*). (For details, see Haltiwanger and Harrington
 (1987).) To prove Theorem 4, we then need only show that 6 > (t) Vt E { 1, . . ., t - 1}, from which it follows
 that t* q { 1, . . .t, - 1}. Since t* exists, then t* must lie in { t . t}.

 To begin, definef(t) as follows:

 f(t) max {rIT w(r)w 2X(t),rE{t+ 1 t}},tE{1. t}. (A3)

 f(t) is the maximum point of the cycle at which monopoly profits are at least as great as monopoly profits at point
 t. It is clear thatf(t) E { t. t} since 7rm(t) > wm(t) if t E { 1. t - 1 }. The method of our proof will be to
 show that

 L(t; 6)-G(t) > L(f(t); 6)-G(f(t)) Vt e {1, . . . 1}. (A4)

 Since the condition in (A4) implies that 5(t) < 8(f(t)), this will be sufficient to prove Theorem 4. Let
 t'E {1,...,t - 1} and t" =f(t').
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 {L(t'; 6) - G(t') }-{L(t'; 6) - = {G( 1/(1 - -6'))[ 6(7rm(t' + 1 )/n) + + '1-'(w7rm(t)/n)

 + + bt(7rm(t')/n)] - (n - 1)(7rm(t')/n)} - { (1/(1 - 6t))[67m(tI + 1) +... + b6""(7rm(t)/n)

 + + it(7rm(t")/n)] - (n - 1)(rm(t')1/n)}. (A5)

 By the definition off(t), we know that 7rw(t) 2 t rm(t'). Therefore, (n - 1)(7rm(t')/n) 2 (n - I)(7rm(t')1n).
 Thus, the expression in (A5) is positive if

 67r"(t' + 1 ) + ... + 6tw"'(t') > brm(t" + 1 ) + + Stw"'(t"). (A6)

 Define:

 A -67rm(t' + 1) + ... + f'w'7rm(t#), (A7)

 B-=i7rm(t" + I ) + ... + 6i5f+t'7m (t') (A8)

 By these definitions, the condition in (A6) is equivalent to

 A + 6't'B > B + 6'-'+'A - (A9)

 AI(I 1- 61'-')] > [B/( 1- 6"'-+')]. (A10)

 The expression on the left-hand side of (A10) is the present value of the stream (i7rm(t' + 1).. r(t")) received
 every t" - t' periods. The right-hand side is the present value of the stream

 (rTM(tt' + 1 ) Tm(t), . . ,TM(t' + 1))

 received every t - t" + t' periods. If t" = f(t'), it is then true that rm(,r') > rm(Tr") Vr' E- {t' + 1, . . t"
 T" E {t " + 1. t, t' + 1}. The condition in (A0) is then true. This proves that [L(t; 6) - G(t)]
 > [L(f(t); 5) - G(f(t))] Vt E { 1, . . ., - 1 } . Therefore, 5(t) < 5(f(t)) Vt E { 1,. - 1 } . We can conclude
 that max {(1), . () } > (t) Vt E {1, . . . }, 1. Q.E.D.

 Proof of Theorem 5. First define the function V(t; w( I), 7r(t), 5) as follows:

 V(t; 7r(1), 7r(t), 6)- [1/(1 - b')][6(7r(t + 1)/n) + . * * + '-'(7r(t)/n)

 + 61-''(7r( 1)/n) + * * * + 6'(r(t)/n)] - (n -1 )(7(t)/n) (Al1l)

 By Theorem 1 we know that { P*( t; 6)} l is defined Vb E (0, 1). By the definition of P*( t; 6) and (A l l ), it is
 then true that V(t; 7r*( 1), . . ., 7r*( t), 6) 2 0 Vt. We will show that if one supposes that Theorem 5 is not true, it
 is then implied that V(t; 7r*( 1), . .w , 7r*(t), 5) < 0 as 5 -- ((n - 1)/n) for some t. This contradiction will allow
 us to conclude that Theorem 5 is indeed true.

 As a preliminary result, let us show that P*(t; 6) : Pm(t) Vt. Suppose this is not true, so that P*(t'; 6)
 > Pm(t') for some t' E {1, 2, . . .}. By reducing price at t' from P*(t'; 6) to Pm(t'), firms raise their profits at t'
 while keeping cheating unprofitable Vt, which means that their total payoffs go up-which contradicts

 IP*( t) }) being optimal. Cheating is less profitable at t' because the gain to cheating is lower when the collusive
 price is Pm(t') while the forgone loss is the same. Cheating is also less profitable at t < t' because the forgone loss
 from cheating is higher, since collusive profits are higher at t'. Finally, for t > t', the gain and loss from cheating
 are unaffected by changing price at t'.

 If Theorem 5 is not true, then P*( t; 6) is not countercyclical as 6 -I ((n - 1)/n). In which case, given
 P*( t; 6) ? Pm(t) Vt and Assumption 5, 7r*( t) cannot be constant across t as 6 -* ((n - 1 )/n). Hence, there exists
 t' such that 7r*(t') 2 7r*(t) Vt and r*(t') > 7r(t) for some t t as 6 -* ((n - 1 )/n). Since

 V(t; 7r( 1) . 7r(t), 6)

 is increasing in 7r(r) Vr # t, then

 V(t'; r1*( 1). *( t), 6) < V(t'; 7r*( t'), . r*( t'), 6) as 6 ((n - )/n). (A 12)

 The right-hand expression in (A12) is V(t';*, 6) evaluated when profits are constant at 7r*( tC). Given
 that limb_((n-1)/n)V(t'; 7r*( t), . r*(t'), 6) = 0, then by (A12), V(t'; 7r*( .. r*(t), 6) < 0 as
 6 -* ((n - 1 )/n). Therefore, (Al 1) does not hold for t = tC as 6 -* ((n - 1 )/n). Since a contradiction has been
 found while presuming that Theorem 5 is false, we conclude that Theorem 5 is indeed true. Q.E.D.

 Proof of Theorem 6. As a preliminary result, we need to show that if optimal profits are less than monopoly profits
 at t', then optimal profits at tC exceed optimal profits at tC + 1.
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 Lemma 1. V6 E ((n - 1)/n, 1), ifwr*( t') < (wr'(t')/n), then r*( t') > w*( t' + 1).

 Proof Let G*(t) denote the equilibrium gain and L*(t; 6) the equilibrium discounted loss from deviating at
 point t. Let us first show that if r*( t') < wm(t'), the L*(t'; 6) = G*(t'), so that the incentive compatibility con-

 straint is binding. Suppose not, so that L*(t'; 6) > G*(t'). Define {P**(t; 6)})1l by P**(t; 6) = P*(t; 6)
 Vt # t' and P* *( t; 6) = P*( t; 6) + E, where E> 0. Since P*( t; 6) < Pm(t') (as r*( t') < 7"m(t')) and the incentive

 compatibility constraint is not binding, we can then choose sufficiently small so that

 L(t; I{P* *(T; 6) )r'Ol 6) 2t G*( t; I{P* *(T; 6)} 1) "

 Thus, cheating is still unprofitable at t' and, furthermore, cheating is still unprofitable at t # t' since the forgone
 loss from cheating is at least as high as before, given that collusive profits are now higher at t'. Therefore,

 I P* *( r; 6) } 1 E A(6), and it yields a higher payoff for firms (since profits are higher at t and the same everywhere
 else), which contradicts the optimality of {P*(t; 6)}ta. We then conclude that if w*(t') <wrm(t'), then L*(t'; 6)
 = G*(t').

 Recall that G*(t) = (n - 1)(r*( t)/n), so that 7r*(t') > w*( t' + 1 ) iff G*( t') > G*( t' + 1). We will prove
 that G*(t') > G*(t' + 1). Given that L*(t'; 6) = G*(t'), then G*(t') > G*(t' + 1) iff L*(t'; 6) > G*(t' + 1).
 Since L*(t; 6) = 6(7w*(t + 1)/n) + 6L*(t + 1; 6), then L*(t'; 6) > G*(ti+ 1) iff

 6(7r*(t'+ 1)In) + 6L*(ti+ 1; 6) > (n- 1)(7r*(ti+ 1)/n). (A13)

 Solving (A 13) for L*( t' + 1; 6), one gets

 L*(ti + 1; 6) > [((n - 1)/6) - 1](7*(t' + 1)/n). (A14)

 Given that L*(ti + 1; 6) 2 G*(t' + 1) (=(n - 1)(7*(t' + 1 )/n)), a sufficient condition for (A14) to be true is
 that

 (n - 1)(7*(t' + 1)/n) > [((n - 1)/6) - 1](r*(t' + 1)/n). (A15)

 It is straightforward to show that (A 15) holds iff 6 > ((n - 1)/n), which is true by assumption. We conclude that
 G*( t') > G*( t + 1) and thus 7r*( t)> w*( t + 1). Q.E.D.

 With Lemma 1, we can now prove Theorem 6. Let use first show that 7r*(i) > ...> 7r*( t)> wr*( 1). Suppose
 7r*( t') = (7rm(t')/n), where t'E { t, . . ., t }. Since r*( t) = (7rm(t')/n) > (7rm(t' + 1 )/n) 2 7r*( t' + 1), then r*( t)
 > 7r*(t' + 1). Now suppose 7r*(t') < (7rm(t')/n). By Lemma 1, 7r*(t') > 7r*(t' + 1). It follows from these two
 steps that 7r*(t)> wr*( t + 1 ) Vt E {t. t}. Therefore, r*(t) > . . . > 7r*( t) > w*( 1).

 For the remainder of the proof, let t? denote the first point during a boom such that optimal profits are below

 monopoly profits; that is, w*(t) = wm(t) Vt E II, . . ., to - 1} and w*(tO) < rm(tO). Suppose to does not exist so
 that w*(t) = wm(t) VtC {1 . .} i. Since rm(1) < . . . < rm(t), then 7r*( 1) < ... <wr*(t). Given we already
 know that 7r*( t) > . .. > wr*(t)> wr*( 1), it immediately follows that 7r*( 1) < ... < r*( t) > ... > r*( 1). In that
 case,t=t.

 Now suppose to E I 1, . . .t, t} so that 7r*( 1) < ... <wr*( to - 1). Since 7r*(tO) <irm(tO), then by Lemma 1,
 w*(tO) > w*(tO + 1 ). Let us show that 7r*(t) > w*(t + 1) Vt EC{ to + 1 . . ., t}. Given that 7rm(tO + 1 ) > 7rm(tO)
 > 7r*(tO) > r*(to + 1), then 7rm(to + 1) > 7r*(to + 1), from which it follows once again from Lemma 1 that
 7r*(to + 1) > 7r*(tO + 2). Continuing in this manner, we can infer that 7r*(t)> wr*(t + 1) Vt E { t? + 1,. t}.
 Thus far we know that 7r*( 1) < .. . <wr*( to - 1) and r*( to) > . . .> r*(t) > . . .> 7r*( 1 ). Ifwr*(to - 1)> >r*(tO),
 then 7r*( 1) < .. . < r*(tO - 1) > ... > 7r*( 1 ) so that t = to - 1. If instead 7r*(to - 1) < r*( to), then 7r*( 1)
 < . . . < 7r*(tO) > ... 7r*( 1) so that t = to + 1.

 Finally, let us show that to # 1. If to = 1, it must be true that 7r*( 1) > ... .> r*(t). However, this contradicts
 our earlier result that 7r*( )> wr*( 1). Q.E.D.

 Proof of Theorem 7. We will use Theorem 6 to prove Theorem 7. Recall that D(P; tC) = D(P; t') VP ? 0, where
 t <t <t'. Let us first show that P*(t'; 6)> P*(t'; 6) V6 E (0, 1). If E (0, (n - 1)/n), then P*(t; 6) = cVt so
 that P*(t'; 6) = P*(ti/; 6). If 6 = ((n - 1)/n), then 7r*(t) = 7rm(1) Vt, which implies P*(t'; 6) = P*(tP'; 6).
 If 6 E [6, 1], then w*(t) = 7r"(t) Vt so that P*(t'; 6) = Pm(t') = P*(tP/; 6). Finally, consider the case when
 6 E ((n - 1)/n, 6). Suppose w*(t') = 7'm(t') so that P*(t'; 6) = Pm(t'). Since P*(t; 6) ? Pm(t) Vt, then
 P*(ti'; 6) ? Pm(t') = Pm(t') = P*(t'; 6). Hence, P*(t'; 6) 2 P*(t'; 6). Now suppose w*(t') <w"m(t'). It follows
 from Theorem 6 that tC 2 t and, therefore, 7r*(t') > . . . > w*( t). Hence, 7r*( t')> w*( t'), which implies P*( t; 6)
 > P*( t'; 6). We have then shown that P*( t'; 6) 2 P*( t'; 6) V6 E (0, 1).

 To conclude the proof of Theorem 7, we need to show that if P*(tC'; 6) < Pm(t'), then P*(tC; 6)
 > P*(t'; 6). Suppose not; then, since P*(t'; 6) 2 P*(tP'; 6), it follows that P*(t'; 6) = P*(tP'; 6). Given that
 P*(tP'; 6) < Pm(t'), then P*(t'; 6) < Pm(t'), which implies w*(t') < wm(t'). However, we have already shown
 that when r*( t') < wm(t'), P*(t'; 6) > P*( t; 6): a contradiction. Q.E.D.
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