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 A Non-cooperative Equilibrium for

 Supergames 12
 JAMES W. FRIEDMAN

 University of Rochester

 I. INTRODUCTION

 John Nash has contributed to game theory and economics two solution concepts for
 nonconstant sum games. One, the non-cooperative solution [9] is a generalization of the
 minimax theorem for two person zero sum games and of the Cournot solution; and
 the other, the cooperative solution [10], is completely new. It is the purpose of this paper
 to present a non-cooperative equilibrium concept, applicable to supergames, which fits
 the Nash (non-cooperative) definition and also has some features resembling the Nash
 cooperative solution. " Supergame" describes the playing of an infinite sequence of
 "ordinary games" over time.3 Oligopoly may profitably be viewed as a supergame. In
 each time period the players are in a game, and they know they will be in similar games
 with the same other players in future periods.

 The most novel element of the present paper is in the introduction of a completely
 new concept of solution for non-cooperative supergames. In addition to proposing this
 solution, a proof of its existence is given. It is also argued that the usual notions of
 " threat " which are found in the literature of game theory make no sense in non-cooperative
 supergames. There is something analogous to threat, called " temptation ", which does
 have an intuitive appeal and is related to the solution which is proposed.

 In section IT the ordinary game will be described, the non-cooperative equilibrium
 defined and its existence established. Section III contains a description of supergames and
 supergame strategies. In section IV a definition and discussion of a non-cooperative
 equilibrium for supergames is given. This equilibrium shares some of the attributes of the
 Nash-Harsanyi [10, 6] cooperative solution, and is very much in the spirit of the solution
 proposed several years ago by Professor Robert L. Bishop in the American Economic
 Review [2]. In section V existence will be proved, in section VI some assumptions will be
 relaxed, and in section VII economic applications will be discussed.

 II. THE GAME AND THE NASH NON-COOPERATIVE EQUILIBRIUM

 An " ordinary game " is a game in which each player has a set of strategies which is a
 compact, convex subset of a Euclidean space of finite dimension, there are a finite number
 of players and the payoff to each player is a function of the chosen strategies of all players.
 In this section, the ordinary game will be described in detail. A proposition, due originally
 to Nash [9], will be proved. It establishes the existence of a non-cooperative equilibrium
 for the ordinary game. Although this result was previously known, it is included for
 completeness. A game is said to be " non-cooperative " if it is not possible for the players
 to form coalitions or make agreements.

 I First version received, May 1969; final version received March 1970 (Eds).
 2 The author gratefully acknowledges the support of the National Science Foundation in the research

 reported here.
 3 Some discussion of early work on supergames may be found in Luce and Raiffa [8], and some interest-

 ing developments in cooperative supergames, by Aumann, is begun in [1].

 A I
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 2 REVIEW OF ECONOMIC STUDIES

 Denote the strategy of the ith player by si, a vector in r -dimensional Euclidean space,
 Rn. The strategy set of the ith player is taken to be a compact, convex subset of Rn,
 denoted Si. There is a fixed, finite number of players, n, and the strategy set of the
 game S, is S1 x ... x Sn, the Cartesian product of the individual strategy sets. A vector
 of strategies, one for each player, is denoted s = (sl, ..., sn) and ?i denotes the strategy
 vector (sl, *S1, Si_l, .., Sn). Thus ?i consists of the strategy choices of all players
 except the ith, and s = (?i, si).

 Payoff to the ith player is a real valued function of strategy, s, and is denoted ni(s).
 A vector of payoffs, associated with a given vector of strategies, may be denoted

 ir(S) = (rl(S), . ., *9n(S)) E Rn.

 Assumptions made on the strategy space S and the payoff functions are:

 Al Si is compact and convex (i = 1, ..., n);

 A2 The payoff functions, 7ti(s), are continuous and bounded on S, for all i;

 A3 The payoff functions ni(s) = nt(si, si) are quasi-concave functions of si, for all i.

 7r.
 2

 7T,

 FIGURE 1

 A point in the payoff space (7r,(s*), ..., 7n(s*)) = i(s*) is said to be "Pareto optimal" if

 (i) s* e S and
 (ii) there is no s E S for which 7ri(s)>7ri(s*) (i = n, ,).

 Denote by H, the set of attainable payoffs: H = {7t(s)j s E S}. Denote by H*cH,
 the set of Pareto optimal payoffs.

 A4 If 7' < t" (i.e., 7r < ir', i = 1,..., n)and 7r', " H, then 1r E Hwhere 7' < X < ?i";

 A5 H* is concave.

 Most of the assumptions above are both reasonable and clear. The least so is A4,
 which will be discussed in section VI. Fig. 1 illustrates the meaning of certain of the
 assumptions. Region " A " is an arbitrary compact set. Compactness is required by
 Al and A2. By A4, the regions denoted " B " are added, and by A5, region " C" is
 added. H* is the heavy outer boundary abcd. Assumptions A4 and A5 mean that sets
 H(7t') = {t I 7t>7r', 7r E H} are convex, and for any 7t E H any non-negatively sloped ray
 through n will intersect H* at exactly one point. This property will prove convenient in
 sections IV and V.
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 FRIEDMAN EQUILIBRIUM FOR SUPERGAMES 3

 It remains in this section to define " non-cooperative equilibrium ", and prove its
 existence for ordinary games of the sort under study in this section. s* is a non-cooperative
 equilibrium strategy vector if s* e S and

 7i(s*)= max ti(s*, si), i = 1, .,n.
 Si E Si

 Proposition 1. Any game satisfying Al, A2 and A3 has a non-cooperative equilibrium.

 Proof.' Define ,u(s) = Y101,) x Yu2(s2) x ... x 117(s,) as follows:

 1-10i) = {tj I ti e Si, 7i(?i, ti) = max 7i(?i, si)}, (i = 1, ..., n), s E S;
 Si e Si

 pi(gi) is clearly compact and convex. As mi(?i)cSi, it is bounded. That pi(si) is closed
 follows from the continuity of 7i, and convexity follows from the quasi-concavity of iCi
 in si. As this holds for all i, the sets u(s) = Y(#i) x 1'2(02) x ... x ,in(s) are compact, convex
 and subsets of S.

 If it can be shown that the correspondence ,u: S-*S is upper semi-continuous, the
 Kakutani [7] fixed point theorem may be applied. A fixed point of , is a non-cooperative
 equilibrium. Let c- E 9, 1 = 1, 2, ..., be a sequence of strategies converging to i. ji(si)
 is upper semi-continuous if, when

 (a) S4 e pi(g!), 1 = 1, 2,..., and
 (b) lim 9 = s and lim s! = sf? then

 l-oo l-oo

 (c) si E Pi4s?).

 Assume a sequence as described in (a) and (b), but assume (c) is false (i.e., s? , ? If

 s? f pi(4?), then ;i(?9, s??)<7ti(9?, st) for s' E pi(s{). Say ti(0, si)-7ti(0, s?) = 8>0. Now
 consider ti(s(, si). By the continuity of 7ti, it is possible to choose an arbitrary 3>0 such
 that for 1 > Y(3) (Y(3), finite),

 7ri(9i Si)- < 7ri(E!9 Si) < 7ri(S?? S') + 6.

 Choosing 3 <s leads to a contradiction; hence, s? E pi(V) and pi is upper semi-continuous.
 As this holds for all i, ,u is upper semi-continuous and has a fixed point. Let such a fixed
 point be s* e ,u(s*). By the definition of the pi,

 max ni(sg*, si) = 7ti(s*), i = 1, ..., n,
 Si E Si

 therefore s* is a non-cooperative equilibrium strategy vector and 7(s*) a non-cooperative
 equilibrium payoff vector.

 It may be noted in passing that when the payoff functions are profit functions, the
 players are firms and the strategies are prices or quantities, the game is a (single period)
 oligopoly. The non-cooperative equilibrium becomes the same as the " Cournot solution "
 [3]. In this instance Si is merely the interval of prices (or quantities) among which the
 firm is allowed to choose. Frank and Quandt [5] proved the existence of the Cournot
 equilibrium for a quantity model. Their result is, of course, a special case of Proposition 1,
 above, and, afortiori, a special case of the theorem of Debreu [4].

 Before proceeding to the next section, a final characteristic of the payoff space will

 be noted: let p = (pl, ..., p) be a vector such that pi> 0 i= 1, ...,n and p Pi=.

 1 This proposition is an easy generalization of the Nash [9] theorem, which deals with Si which are
 finite sets of pure strategies, together with all mixed strategies attainable from them. The proposition is, on
 the other hand, a special case of a theorem of Debreu [4], which, so far as the author is aware, is the most
 general statement of existence of non-cooperative equilibria in finite strategy spaces.
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 4 REVIEW OF ECONOMIC STUDIES

 If k is a scalar, then the points i(s) + kp (-oo < k < oo) form a ray through i(s) having
 non-negative slope. By A4, for any p there is a unique k(p) > 0 such that

 i(s)+k(p) p E H*
 for any s E S. In particular, this property holds when s is a non-cooperative equilibrium.

 rrr. SUPERGAMES AND SUPERGAME STRATEGIES

 The games of the preceding section have been dealt with in the " normal " form-
 the form in which there is a payoff function for each player giving his payoff as a function
 of a strategy vector, ni(s). It is convenient now to define " supergame " in extensive
 form; i.e., in the form in which each " move " is described. An " ordinary " game may
 be termed a "finite " game because the strategy sets of the players are compact and reside
 in a finite space.

 Now consider a sequence of ordinary games with strategy sets Si,, Si2, .., Sit,.
 and payoff functions itj(st)(st e St); t = 1, ...; i= 1, ..., n. The tth game has
 S, x ... x Snt = Snt = St as its strategy set and 7it(st) (i = 1, ..., n) as its payoff functions.
 A " supergame " is a game in which the tth move (t = 1, ...) is the playing of the tth
 ordinary game in the sequence. At each move a payoff is received and, if the strategy

 sequence sl, ..., st, ... is played, the payoff to the ith player in the supergame is
 00

 E (Xit7it(st),
 t = 1

 where ait is the discount parameter of the ith player in the tth time period. It is obvious
 that a " supergame " in which the number of moves is finite is merely a finite game; hence,
 attention will be restricted to supergames as defined above, which have a countably infinite
 number of moves.

 The general definition of a supergame strategy for the ith player is as follows:

 Sit = fit(Sl, ...* St- 1), t = 2, 3,
 = Sil, t = 1.

 fit(t = 2, 3, ...) is a sequence of functions which map all preceding ordinary game strategies
 of all players into the present (tth) ordinary game strategy of the ith player. As there is
 no past information available in the initial period, there must be a particular initial move.
 Then (Si ff2, fi3, ...) is a supergame strategy for the ith player. Existence of non-cooper-
 ative equilibria in the supergame is no problem. Indeed the problem is the reverse; it is
 easy to show existence of a large number. The principle task of this paper is to choose
 among these in a particular way and single out certain equilibria as being of special interest.

 IV. EQUILIBRIUM STRATEGIES IN THE SUPERGAME

 This section is devoted to describing a very large class of supergame strategies, to
 showing when members of this class are non-cooperative equilibria and to introducing
 a new solution concept.

 The exposition will be simplified by using four additional assumptions: (A6) all
 constituent games of the supergame are identical, (A7) the discount parameters are the
 same in all periods, (A8) the ordinary game has only one non-cooperative equilibrium,
 and (A9) the non-cooperative equilibrium is not Pareto optimal. All of these assumptions
 may be removed with only minor effect on the results. This will be done in section VI.

 Denote by ai a supergame strategy for the ith player, and denote the non-cooperative
 equilibrium of the ordinary game by sC. The " Cournot strategy " is denoted ac and is
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 FRIEDMAN EQUILIBRIUM FOR SUPERGAMES 5

 defined by aF = (Si Sj' ...), (i = 1, ..., n). The Cournot strategy is the repeated choice
 of the non-cooperative equilibrium of the ordinary game. It is immediate that

 T= f1 ** n)

 is a non-cooperative equilibrium in the supergame. Should any single player in any periods
 choose moves other than s he will (by definition of sC) reduce his payoff in those periods
 and leave unaffected his payoff in the periods when he still chooses sc.

 Now a new class of non-cooperative equilibrium supergame strategies will be specified
 and discussed.

 Let

 B = {s I s G S,r i(s)>>rj(sC)c j 1, ..., n}.

 B consists of all ordinary game strategies which dominate the ordinary game non-
 cooperative equilibrium. Let s' E B. Now define a strategy for the ith player, vi', as follows:

 Sil = Si,

 Sit=Si if sj?=s j#i rT= 1, ..., t-1, t=2, 3, ....

 Sit = sC otherwise.

 Thus, the ith player chooses sj in period 1 and will continue to choose Sj indefinitely, unless
 someone else chooses something other than s(j =A i). If any player in any period chooses
 sj # sJ(j # i), then in each succeeding period the ith player chooses sc The supergame
 strategy vector a' = (a', ..., an) is a non-cooperative equilibrium if:

 00 00

 Z airs(s')> 7ri(, ti) + Ti(S) i = ...,
 Xr = O T =1

 or

 0 -[7r(s' )-7r(s()] >7r(Si, ti) - 7i(s'), in , .,n
 1- cc

 where ti E Si and ni(gs, ti) = max ni(Z, si).
 siesi

 To see whether av is the best strategy for the ith player, given i, consider his alter-
 natives. One is to choose a, which results in using sj in every period, while all other
 players will choose sJ(j # i) and the discounted payoff stream will be

 E0 7ris'= itS).

 Another is to choose sil = ti, and sit = s(t> 1). ti will yield the maximum possible payoff
 in period 1 (given the other players will choose sJ(j # i)). After period 1 all other players
 will revert to the Cournot strategy, so the payoff maximizing choice after period 1 is

 Sit = sF. Any other strategy is weakly dominated by one of the two just described, when
 the other players are using crS(j # i).

 Which strategy to adopt simply depends upon which discounted profit stream is the

 larger. I.e., if the gain in the first period of maximizing against s- [11i(S, ti) - 7ri(s')] is less
 than the discounted loss from being at the Cournot point in all succeeding periods

 (1 _ Oa [i(S i(s)]

 then uc is the strategy which maximizes discounted payoff for the ith player, given that the

 strategy choices of the other players are (aS, j =A i).
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 6 REVIEW OF ECONOMIC STUDIES

 As the discount parameter approaches one from below (discount rate falls to zero),
 the discounted loss from being at the Cournot point goes to infinity, while the single period

 gain from choosing ti is finite and unchanging. So for any s' e B there is a lower bound
 for ci, cxi(s'), (such that xi(s')< 1) and if s' eB and cxi>xi(s'), then ui is optimal against
 6. If these conditions hold for i = 1, ..., n, then (a', .., ?') is a non-cooperative
 equilibrium.

 Certain of the s E B are of special interest. There is a subset B* cB of move vectors
 which give rise to Pareto optimal payoff vectors:

 s* E B* if

 (a) s* e B and

 (b) 7r(s*) e H*.

 In considering a move vector (i.e. an ordinary game strategy vector), s* eB*, why

 might a player cease choosing s* if he has reason to believe the others will continue choosing

 sfjt # i)? Clearly, he may feel a temptation to choose ti (which maximizes the single
 period payoff against s) because of the extra payoff which may be gained in the short run

 [7i(0 , ti) - i(s*)]. Because the players should never, in the long run, receive less than
 7r(sc) per period and because they may follow strategies which send them to 7rC under some
 circumstances, it is intuitively appealing to measure the temptation associated with s*
 in relation to 7ri(s*) -7ri(sC). Associated with the equilibrium proposed in this paper is the
 equilibrium move vector, s*, which satisfies:

 s* E- B*, . ..(1

 7ri(Si, ti)-7ri(Sc) 7rj(sj, tj) -7r(S')
 7ri(S 7i(S ') j(S*)-7rj(Sc) i,j=1,.. n. 2

 This point is Pareto optimal and leaves each player equally tempted (in the sense of the
 preceding paragraph) to maximize against s*. An alternative way of expressing (2) is

 7(S* ti) - 7i(s*) 71j(S; tj) - nj(S*) , i = 1 , ..., n. ...(2')
 7ri(S*) - 7ri(S') z7j(S*)- 7j(SC) 9

 Thus, aif > ) _ '(, (i-=7,.....S , n), then the strategies a*= (a*, ..., a*)form
 1 -aic 7ti(S*) - r(SC)n

 a non-cooperative equilibrium, where u* is defined by

 Si =s

 Sit = S" if Sj, = SJ(j # i), T = 1, ..., t1, t> 1,

 Sit = sf otherwise.

 It should be emphasized that a*, in addition to being a non-cooperative equilibrium, is
 Pareto optimal. sC, the non-cooperative equilibrium of the basic game need not be Pareto
 optimal, and, as students of oligopoly theory are aware, its oligopoly counterpart, the
 Cournot solution, is generally not. It remains to show that ordinary game strategies
 satisfying (1) and (2) above do, in fact, exist. Before turning to that task, some comments
 will be made concerning properties of this concept of solution.

 It is natural to ask if the proposed solution possesses any appealing properties and
 and also whether one might expect a cooperative solution to emerge (such as the Nash-
 Harsanyi [10, 6] even though the game is non-cooperative. While the Nash-Harsanyi
 solution applies to ordinary games, one could propose the sequence of Nash-Harsanyi
 solutions of the ordinary games as the solution of the supergame. The main reason for
 rejecting this, and other, cooperative solutions is that they rely on features of games which
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 FRIEDMAN EQUILIBRIUM FOR SUPERGAMES 7

 are peculiar to cooperative games and absent in non-cooperative. These revolve about the
 notion of " threat ".

 It is often part of a cooperative game that the players name threat strategies and then,
 if they fail to come to agreement, they are forced to carry out these threat strategies. If
 he were not forced, a player would do better in the absence of agreement to maximize
 against the strategies he expects the others to use. Applying this reasoning to all players,
 one would expect them to choose the non-cooperative equilibrium-if they were not forced
 to carry out threats. This undermines the credibility of the threats.

 Now consider the cooperative game from another vantage point. When a single
 player (or a subset forming a coalition) calculates the best payoff he can get by himself,
 he does so on the assumption that all other players will band together and adopt a strategy
 aimed at minimizing his payoff. Even in a cooperative game, this may appear an unduly
 costly way for the others to act; however, as a threat to coerce the player into an agree-
 ment with all other players, it has some appeal. By contrast, in the non-cooperative game
 coalitions are ruled out, players cannot talk and bargain with one another; hence, it is
 foolish to think other players wish to minimize one's own payoff. Each will want to
 maximize his own payoff and will not really care about payoffs to others. In other words,
 threats are out of place in non-cooperative games because they cannot be clearly and
 effectively voiced, and because they are not credible. They need not be carried out and
 there is no incentive to do so.

 The notion of " temptation " in the supergame is slightly analogous to threat. If a
 player can increase his single period profit for a period or so, he may be tempted to do so,
 but the other players are, in response, likely to revert to a " safe " position. This is a
 position in which no one has any temptation to move for the sake of short term gain.

 There are certain properties which one might like an equilibrium to possess:

 al, The solution should be unique, and always exist;
 a2, The solution should be independent of irrelevant alternatives;
 o3, The solution should be Pareto optimal;
 o4, The solution should be symmetric;
 a5, The solution should be invariant to a positive linear transformation of a payoff

 function;
 a6, The solution should be a non-cooperative equilibrium.

 The Nash cooperative solution satisfies oc2-oc5. The solution proposed here satisfies
 o3-o6. Properties o3 and o6 are obviously fulfilled, as is c5 (note that equation (2) is free
 of origin and scale). The meaning of a4 is that the solution should not depend on who is
 called player 1, who player 2, etc. That cl is not met is obvious already, as existence
 depends on the discount parameter not being too small. It will be seen that if the ci are
 sufficiently near one, an equilibrium must exist. Neither the present equlibrium nor the
 Nash-Harsanyi need be unique (except for the N-H when n = 2).

 The irrelevant alternatives assumption, o2, deserves special mention. Its meaning
 is that if you enlarge the set of available strategies, S, to a set AD S, then one of two
 conditions will hold: (i) the solution to the enlarged game will be the same as in the
 smaller game, or (ii) the solution will be a point, y E A, which was not previously available
 (y 0 S). In other words the addition of new strategies cannot affect the solution unless
 one of the new strategies is the new solution. Thus the solution depends only on local
 properties of the payoff surface in the neighbourhood of the solution. This is very restrictive.

 With the solution concept presented here one can well imagine oc2 being violated. For
 example, enlarge the move space from S to A = A1 x ... x An. Conceivably one or more
 players find that, while the old solution s* e S, is still Pareto optimal (and SC is still the only
 single period non-cooperative equilibrium), the ti do not satisfy

 max ni(?'i, si) = 7t(?i, t,)
 Si e At
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 8 REVIEW OF ECONOMIC STUDIES

 Should this happen, the point, y*, which is the new equilibrium, might be in S, although
 the associated ti will not all be in S.1 It is good that the solution offered in this paper
 is not restricted by oc2.

 V. EXISTENCE OF EQUILIBRIUM

 The existence proof is based upon a fixed point argument which, while it guarantees
 existence, does not guarantee uniqueness. The fixed point argument will be used to show
 that points s* exist such that

 7ri(Si , ti) - 7i(S*) 7nj(g*, tj) - 7j(S*)..
 i(s*)-7ri(sc) - rj(s*)-7rj(Sc), (I,]= 1, ..., n).

 A point s* has n points (s, t,) associated with it. The ti are determined by

 nj(?-, ti) = max ij(?-, si).
 Si e Si

 In fact E Si is mapped into ri. Denote this mapping q5j. A preliminary result will
 now be proved.

 Proposition 2. The mappings 4 are continuous, for all i.

 Without loss of generality, the proposition may be proved with specific reference to

 41. Let sl be any point in 31 and let s? E S1 be chosen so that 7rr(3, so) = 4(90). Let
 (= 1, 2, ...) be a sequence of points in S, such that s --* 0 as 1-o so. By definition of
 01, there is a sl associated with V' such that 'gi(sl , sI) = 01(j3), (I = 1, 2, 3, ...). It must
 now be shown that

 lim 1(sl)= = 1001).
 l-00O

 Clearly lim 1(31) ? lim nr1(3-, s?). But lim r,(31, s?) = 7r1(9, s?) = i1(30) by con-
 l-oo l-oo l-oo

 tinuity of7rr. But if lim 0b(31)> i(30), there would be a value of , = lim si such that
 l-ao oa)

 7r(sl?, s'1)>rl(30, s?), due to continuity of r1. This, of course, contradicts the definition
 of 45; hence the function of 01 is continuous. The same argument may be repeated
 for the remaining qj

 With the continuity of the i established, it is now possible to prove the existence
 of a Pareto optimal move s*, satisfying the condition

 71i(S,, ti) - 7ri(Sc) _j(S5, tj)-7rj(SC)

 7ir(S*) -ri(Sc) 7rj(S*) - 7r(Sc)

 7ti(S ti) =
 Proposition 3. There exists a move s* e S such that 7r(s*) is Pareto optimal and

 (t~) )- {i(SC) = oj(?j) - rr(Sc) (i, J = ,1 n).
 gi(S) -)7E-i(Sc) nj(S*)-7rj(SC)'

 For any p = (pl, ..., p), (pi > 0, pi = 1) there is one Pareto optimal point 7r(Sp)
 such that

 7i(S,)-7i(Sc)

 E [7rj(S,)-7rj(Sc)]

 1 Strictly speaking, this is necessarily true if the original equilibrium s* is unique. If s* and y* are both
 equilibria of the smaller game, it is possible that enlarging the move space eliminates s*, leaves y* unaffected
 and creates no new equilibrium points. This still violates a2.
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 FRIEDMAN EQUILIBRIUM FOR SUPERGAMES 9

 The condition of Pareto optimality ensures that this mapping from points on the unit
 simplex, p, to certain Pareto optimal profit vectors (i.e. from the unit simplex to points in
 the closure of B*) is one-one and onto. Now define a mapping Q2 as follows:

 QI maps a point p on the unit simplex into 3 where:

 3j = ( 7p) i(s) = Q(p) i = 1, n
 .E[oj(?j,) - 7j(SC)]

 j= 1

 Clearly 3 is a point on the n-dimensional unit simplex, for 3. > 0 because

 oi(gip) >-7ri(Sp) > 7Ti(Sc).

 Continuity of the Xi implies continuity of Q; therefore the Brouwer fixed point theorem
 may be applied. Any point, s* = sp, such that p = Qi(p), satisfies the conditions of the
 proposition.

 While existence is assured, uniqueness is not. Furthermore, existence of a point s*
 does not, by itself, assure existence of an equilibrium strategy vector (U*, ..., a*), satisfying

 (1) and (2). This depends, additionally, on the discount rates of the players, 1 ,not

 being too large. In particular, existence is assured if

 1- cj< 7ri(s*) - ri(sc)
 cci oi(4) -)i(sc)

 Thus, the following proposition is established:

 Proposition 4. If Al-A9 are true, then a supergame strategy, cr*, which satisfies (1)
 and (2) exists and is, in addition, a non-cooperative equilibrium when

 i< 7i(S*)-7r,(Sc) i n.
 ci 4i(?*) - 7i(Sc)

 When o* is a non-cooperative equilibrium it might be called the " balanced tempta-
 tion solution ", for its characteristic (apart from being both Pareto optimal and a non-
 cooperative equilibrium) is that the ratio of short term gain from maximizing against
 S to the loss per period of having done so is identical for all players. I.e.:

 I(s* ti)-zi(s*) Xj(SJ tJ)-zj(S ) for all i and]
 7ti(S*) - 7i(Sc) 7tj(S*) - 7t(SC)

 An equivalent statement is that v* is defined so that cxi(s*) = ocj(s*), for all i and j. That is,
 the discount parameter which makes the ith player indifferent between choosing Ui and

 choosing (ti, sc s/P ...) against the o,* is the same for all players.

 VI. THE RELAXATION OF ASSUMPTIONS

 The first assumptions to be dropped are those made at the beginning of section IV:
 (A6), all constituent games of the supergame are identical; (A7), the discount parameters
 are the same in all periods; (A8), the basic game has only one non-cooperative equilibrium;
 and (A9) the non-cooperative equilibrium is not Pareto optimal.

 Taking (A9) first, it is immediate that if 7t(sC) E H*, then it is the only element of H*.
 By default, the supergame equilibrium strategy would be for each player to always choose

 Si(i = 1, ..., n). Relaxing the remaining assumptions, let Si, be the strategy set of the ith
 player in the ordinary game of period t, let Ctc S = Si x ... x S,t be the set of non-
 cooperative equilibria of the ordinary game of period t, and let oi, be the present value
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 10 REVIEW OF ECONOMIC STUDIES

 of the discount parameter of the ith firm in period t. That is, if the one period discount
 rates are ril, ..., rit, ..., then

 t-I t,t [-' 1 _ i t-__ t_2_ L'it = Hi t- ~3 .
 T =I 1+ ri, 1 + ri, t'

 Lil = 1.

 If C = C, x C2 x ..., then c = (c,, c2, ...) E C is an infinite sequence of ordinary game
 non-cooperative equilibria, where ct is a non-cooperative equilibrium in the game described
 by (St, irt). Proposition 3 proves a result about ordinary games: if ct E Ct, then the set
 of points Pt - Pt(ct) such that

 4)it(Pit) -rit(Ct) jit(Pjt) - jt(ct)s i, j=l1 .. n; t =1, 2, *,* (3)
 7rit(pt) -it(ct) rft(pt) - t(ct)

 1tt(pt) E H*, TCt(Pt) - irt(ct), t = 1, 2, ..., ...(4)

 is not empty. The symbols 7rit and qit are defined as before, except that they are in relation
 to the game of the tth period.

 Let tit be defined as follows:

 Rit(pit, tit) = max ni(it, sit).
 sit e Sit

 Let p e P(c) = PI(cl) x ... x Pt(ct) x ... be a sequence of points satisfying conditions (3)
 and (4), above. In relation to a given c E C and p c P(c), the supergame strategy oi(c, p)
 is defined for the ith player:

 Sii = pil, *. (5)

 Sit = Pit if sjl= pJ j = j , n; r = 1, ..., t-1, t > 2, ...(6)
 Sit= cit otherwise. .*(7)

 o(c, p) = [r, (c, p), ..., U.(c, p)] is a non-cooperative equilibrium for the supergame if:
 00 00

 Z X?7rit(pt) > aitir(Pi", tit) + I ciT7rT(c?) i = 1, ... , n, t = 1, 2(8)
 T = t T = t+ 1

 If these conditions are met, the actual moves chosen will be p (= Pi, P2, ...). Here it must
 be true that no player in any period finds it more profitable to maximize against Piit and
 see the future moves be ct+ 1, .... Of course, this was true previously; however, when the
 same game is repeated in each period and discount rates are invariant over time, it is either
 never profitable to choose ti, or most profitable to do so in the first period of the supergame.

 If Pt = ct for all but a finite number of time periods, a cannot be an equilibrium,
 and, if that were true for all c E C, the only supergame non-cooperative equilibria would
 be strategies in which basic game non-cooperative equilibria were repeated.

 Thus Proposition 4 is now extended to supergames, satisfying only A1-A5:

 Proposition 5. If A1-A5 are true, then a supergame strategy satisfying (3)-(7) exists
 and is a non-cooperative equilibrium for the supergame if (8) is satisfied.

 A4 might be weakened to say that for given ct E Ct and (p, ..., pn) exactly one
 member of the family of vectors [k(p1, ..., p.)+i7(cO)], Pi > 0, i = 1, ..., n, Ypi = 1, k > 0
 coincides with a point on the payoff possibility frontier. Thus a surface such as is found
 in Fig. 2 would be possible. Proposition 3 is still valid. There will be at least one point
 on the profit frontier, in the segment from a to b. which will map into itself. Such a point
 provides the basis for a non-cooperative equilibrium which satisfies axioms a4-a6. Pareto
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 FRIEDMAN EQUILIBRIUM FOR SUPERGAMES 11

 optimality cannot be guaranteed. Now two possibilities emerge. (a) Do not require
 Pareto optimality of the solution, merely require that it lie on the frontier. (b) If the
 solution found by (a), preceding, is not Pareto optimal, substitute for it the nearest Pareto
 optimal point which has a larger payoff to each player.

 72

 Xt-X~~~~b

 7r,
 FiGuRE 2

 VII. COMMENTS ON ECONOMIC APPLICATIONS

 A promising area of application for the equilibrium concept developed here is to the
 theory of oligopoly. With the game interpreted as an oligopoly, the Cournot, or ordinary
 game non-cooperative, equilibrium is not a Pareto optimal point. Considerable dis-
 satisfaction has been voiced over the years with this equilibrium as a viable outcome in
 oligopoly. Even though out and out explicit collusion is difficult in a nation having anti-
 trust legislation, because agreements are not legally binding and even meetings to attempt
 agreement may be illegal; still it seems unsatisfactory for firms to achieve only the profits
 of the Cournot point when each firm must realize more can be simultaneously obtained
 by each.

 This line of argument often leads to something called " tacit collusion " under which
 firms are presumed to act as if they colluded. How they do this is not entirely clear,
 though one explanation is that their market moves are interpretable as messages. They
 converse in a code, as it were. Another explanation is that the " tacit collusion " is
 spontaneous. Everyone is so aware of the shortsightedness of Cournot behaviour that
 they simply behave better.

 Yet, despite these misgivings, the Cournot solution has never been entirely in disrepute.
 It remains, neither wholeheartedly accepted, nor firmly rejected. No doubt this is because
 no acceptable alternative has been proposed, and because a non-cooperative equilibrium
 possesses attractive properties which are hard to entirely forego.

 The equilibrium presented here is a sort of reconciliation. It provides an equilibrium
 which is both Pareto optimal and a non-cooperative equilibrium. Thus, it is possible
 to see the firm as selfish, willing to make any alteration in its behaviour which will increase
 its (discounted) profits, and, at the same time, all firms are jointly earning a Pareto optimal
 vector of profits. They are neither foregoing profit, nor behaving in a way which exposes
 firms to being " double-crossed ".

 In the preceding section, it was found that there may be many basic game non-
 cooperative equilibria and, for each such point, many Pareto optimal points which could
 form part of a supergame non-cooperative equilibrium. Were this so, it would be im-
 possible to choose one supergame equilibrium and regard it as a " natural " game solution,
 i.e., a particular set of strategies one should expect the players to adopt. It is possible,
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 12 REVIEW OF ECONOMIC STUDIES

 however, that in application to oligopoly, the additional knowledge of the structure of
 the game may be such as to guarantee existence of only one equilibrium. A unique
 equilibrium would be a natural solution. Likewise, the difficulty that Proposition 3 could
 lead to a point on the profit frontier which is not Pareto optimal may turn out impossible
 in oligopoly models.

 The implications of the supergame equilibrium for oligopoly will be explored in
 more detail in a subsequent paper.
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