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 Long-run competition in capacity, short-run
 competition in price, and the Cournot model

 Carl Davidson*

 and

 Raymond Deneckere**

 In this article we investigate the nature of equilibrium in markets in which firms choose the
 scale of operation before they make pricing decisions. We analyze a duopoly model in which

 firms choose their capacities before engaging in Bertrand-like price competition. We dem-
 onstrate that the Cournot outcome is unlikely to emerge in such markets and that the equi-
 librium tends to be more competitive than the Cournot model would predict. In addition,
 our results indicate a tendency toward asymmetricfirm sizes and price dispersion that results
 from the mixed strategies firms use in equilibrium.

 1. Introduction

 * In a recent article in this Journal, Kreps and Scheinkman (1983) present and analyze

 a two-stage model of oligopoly in which firms choose their capacities before engaging in
 Bertrand-like price competition. Surprisingly, they are able to demonstrate that under certain
 assumptions the unique perfect equilibrium outcome of this game coincides with the Cournot
 outcome. This result, if robust, is important since it suggests that the Cournot equilibrium
 can be viewed as the result of price competition among firms, as long as they choose the
 scale of operation before they set prices. This provides a defense to the criticism that in
 Cournot's model prices are not set optimally.

 The purpose of this article is to investigate in more detail the nature of equilibrium in
 markets in which firms make capacity decisions before they make pricing decisions. To do
 so we first demonstrate that the result of Kreps and Scheinkman (1983) depends critically
 on their assumption of how demand is rationed when the lower-priced firm cannot meet
 market demand. We accomplish this by suggesting an alternative rationing rule for which
 the Cournot outcome cannot emerge in equilibrium. In fact, we show that the same is true
 for virtually any other rationing rule. Moreover, we argue that when the rationing rule is
 allowed to be chosen endogenously, our preferred alternative is likely to be observed in
 equilibrium.

 * Michigan State University.
 ** Northwestern University.
 The inspiration for this article arose in a discussion with Charles Wilson. Helpful suggestions and comments

 were also provided by William Brock, Michael Rothschild, Martin Osborne, Jose Scheinkman, two anonymous
 referees, and the Editorial Board. We are happy to have this opportunity to thank them.
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 The fact that the result of Kreps and Scheinkman ( 1983) is sensitive to the specification

 of residual demand does not imply, however, that their model is of no interest. In many
 markets firms must, for technological reasons, decide upon capacity long before they make

 their pricing decisions.' The nature of the equilibrium generated by models of this type is
 thus of great practical importance. Therefore, we derive the equilibrium in the two-stage
 game by using our alternative rationing rule and discuss its properties. One surprising result
 is that when capacity is relatively cheap, there exist two perfect equilibria in behavioral

 strategies. Despite the symmetric initial setup, these equilibria are asymmetric. Moreover,
 they involve firms' randomizing over prices, and occur at capacity levels exceeding the
 Cournot levels for both firms.

 This striking difference from Kreps and Scheinkman (1983) occurs because in moving

 from their rationing rule to our alternative, the firms' ability to charge different prices
 increases as a more favorable contingent demand curve is left for the high-priced firm. For
 given values of capacities, then, firms earn larger profits. Moreover, under our preferred

 rationing rules the maximum of the first-stage profit function (as a function of the firm's

 capacity, and for a given capacity limit of its opponent) occurs at higher capacity levels.
 This lure of larger profits makes firms compete more intensely and results in higher equi-
 librium capacities.

 Our results therefore tend to indicate that the Cournot model underestimates the degree
 of competitiveness in markets that are characterized by technological commitment. In ad-
 dition, they point a natural tendency towards asymmetric firm sizes, even when no industry
 participant has any natural or technological advantage over his competitors. Finally, since
 firms use mixed strategies in equilibrium, our model predicts price dispersion. This price
 dispersion is persistent and could be interpreted as the result of periodic sales as in Varian
 (1980) or as the result of a game of incomplete information in which the firms' payoff

 functions are subject to very small privately observed random shocks as in Harsanyi (1973).

 2. Rationing rules and contingent demand

 * Consider a market shielded from entry, in which two firms produce a homogeneous
 product at zero cost and face capacity constraints K1 and K2, respectively. It is well known
 that when the firms compete in prices, for a large portion of the parameter (i.e., capacity)
 space, equilibria will occur only in mixed strategies, with firms' almost certainly charging
 different prices (Shubik, 1959; Beckmann, 1965; Levitan and Shubik, 1972). When the
 lower-priced firm cannot meet its entire demand, the remaining firm's sales will depend
 upon the manner in which demand is rationed. Different rationing rules will clearly lead
 to different equilibria. The purpose of this section is to suggest alternative assumptions about
 rationing, the contingent demand curves they imply, and the instances in which these as-
 sumptions are appropriate. We can greatly facilitate this task by considering two possible
 interpretations of aggregate demand, which we then use to contrast the assumptions needed
 to generate various contingent demand curves.

 Let us examine the rationing scheme advocated by Kreps and Scheinkman (1983). It
 has two possible interpretations. First, imagine that the market demand curve D(p) is gen-
 erated by a society of identical individual consumers, all of whom share the same downward-
 sloping demand curve. Consider the situation in which firm one charges a lower price than

 firm two (pi < P2), but cannot meet all demand at that price (i.e., D(pl) > K1). Kreps and
 Scheinkman implicitly assume that firm one, realizing that there is excess demand for its
 product, places a limit on the number of units that each consumer may buy. In fact, they
 assume this limit to be K1 (assuming the total measure of consumers to be one), so that

 ' In the automobile industry, for example, capacity decisions are made well over a year in advance of pricing

 decisions (Friedman, 1983).
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 each customer can purchase the limit. Since the top portion of each consumer's demand

 curve is satisfied, sales for firm two will be given by D(p2) - K1. In other words, its contingent
 demand curve is obtained by shifting the market demand curve K1 units to the left at each

 price above Pi (see Figure 1).
 In the second interpretation D(p) is the summation of inelastic demands of heteroge-

 neous consumers, all of whom wish to purchase one unit of the good, provided the price is

 below their reservation value. In this case, however, the lower-priced firm would have to
 serve the consumers with the highest reservation values first.2

 The rationing rule chosen by Kreps and Scheinkman (1983) is an extreme one, in the
 sense that it leads to the worst contingent demand curve for firm two. With the first inter-

 pretation of aggregate demand this results because each consumer's willingness to pay is
 decreased equally. With the second interpretation this results because the lower-priced firm
 removes the most attractive group of customers from the market. We now wish to suggest
 an alternative rule that leads to the best contingent demand curve for firm two (under the
 first interpretation of aggregate demand).3 When customers have identical downward-sloping

 demand curves, this rule rations output by allowing customers to make unlimited purchases
 as long as output is available. If output is sold on a first-come-first-served basis, those that
 arrive late are unable to purchase any output at all. The consumers left for the higher-priced
 firm would then be a random sample of the consumer population, and, thus, sales for firm

 two would amount to D(p21pI) = D(p2)[ - (K1/D(p1))] for all P2 > Pi (see Figure 2). In the
 heterogeneous consumer model the same residual demand curve will arise if we assume

 FIGURE 1

 THE KREPS-SCHEINKMAN CONTINGENT DEMAND CURVE

 D(p)

 D(p2 p)\

 p1 \--? -

 K1

 D(p)

 2 Perry (1984) justifies his use of this contingent demand curve by assuming that resale is possible. We choose
 to rule out resale because in many markets it is infeasible (e.g., service industries) and in most others it occurs at

 only a trivial level.

 3 With the second interpretation of aggregate demand this is, strictly speaking, not true. In principle, it is

 possible that low reservation price customers arrive at the lower-period store first, so the high reservation price

 customers are left for the higher-priced firm.
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 FIGURE 2

 THE BECKMANN CONTINGENT DEMAND CURVE
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 that customers arrive at random. Following a suggestion by Shubik (1959), Beckmann
 (1965) used this contingent demand curve to study equilibria in price-setting games4 with

 symmetric capacity constraints. We shall, therefore, refer to this specification as the Beck-

 mann contingent demand curve.
 Many other reasonable rationing rules could be considered. For example, in the ho-

 mogeneous consumer case, one could consider the set of rules of the form: "each con-

 sumer is limited to X(pi) units with service on a first-come-first-served basis," where
 X(pi) E [Ki, D(pi)]. The Kreps and Scheinkman (1983) and Beckmann (1965) rules form
 the bounds for this set with increases in X(pi) leading to more favorable residual demand
 curves for the higher-priced firm. Below we shall argue that when firms choose X(pi) in a
 profit-maximizing manner, Beckmann's (1965) contingent demand curve will arise in equi-
 librium. First, however, we wish to demonstrate that with any rule in this class, or, in fact,
 virtually any other one, the Cournot outcome cannot emerge as an equilibrium of the two-

 stage game.

 Let D(pilpj) denote any downward-sloping contingent demand curve for firm i
 that is twice differentiable except at pi = pj. Then D(pijpj) satisfies the inequality
 D(pi) -Kj K< D(pilpj) < min (D(pj) - Kj, D(pi)) for Pi > pj, and D(pilpj) = D(pi) for
 Pi < p1. For Pi = pj we assume that D(pilpj) = min [Ki, max (D(pi)/2, D(pi) - Kj)].
 Also, let DK(pilpj) denote Kreps and Scheinkman's (1983) contingent demand curve, let
 DB(pilpj) denote Beckmann's (1965) curve, let pC denote the Cournot price for the de-
 mand curve D(p) (assuming a cost of production equal to the cost of capacity), and let

 Kc = qC = D(pc)/2 denote the Cournot capacity, output, respectively, for each duopolist.
 With the following definition, we can prove the desired result.

 ' His analysis contains some errors, however, as for certain values of capacity his proposed equilibrium
 distribution functions take on values exceeding one.
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 Definition. Let f g: R R be functions that are continuously differentiable, except at a
 finite number of common discontinuity points. Then f is locally distinct to the right from
 g at the point y if lim f '(x) # lim g'(x).

 Theorem 1. Suppose that D(pijpj) is locally distinct to the right from DK(pipj) at
 Pi = pj = pC when K1 = K2 = KC. Then the Coumnot outcome cannot emerge in the equilibrium
 of the two-stage game with D(pijpj) as the contingent demand curve.

 Proof. To prove this theorem it is sufficient to establish that P2 = pC is not an op-
 timal response to PI = pC when K1 = K2 = KC. If each firm installs capacity Kc and
 charges the Cournot price, the market will clear with each firm's selling at capacity. Be-
 cause of this, all contingent demand curves intersect at the point (Kc, pC) and are right

 continuous at P2 = pC. Since D(p2Ipc) is locally distinct to the right from DK(P21pC) and
 D(p21pC) > DK(P21PC), it follows that

 lim YD(P21Pc) < lim DVP2IPc). (1)

 Let us assume that production is costless (the general case is analogous). Then profits for

 firm two are given by D(p2IpC)p2. From Kreps and Scheinkman (1983) we know that

 lim D (P2IPC)P2 + DK(P2IPC) = 0. (2)
 p2Vpc

 Differentiating firm two's profit function and using (1), (2), and the fact that

 DK(pclpc) = D(pcjpc), we obtain:

 lim D'(p21pc)p2 + D(p2pc) > lim DK{p2IPc)P2 + DK(P2IPC) =0.
 P2Vpc p2Jpc

 Thus, firm two can increase its profits by raising P2 above pc. Q.E.D.

 The intuition for this result is clear: since any contingent demand curve that is locally
 distinct to the right from the Kreps and Scheinkman curve at the Cournot point must be
 steeper at this point, firms have an incentive to raise price above the Cournot level.

 Since the equilibrium is sensitive to the specification of contingent demand, it is im-
 portant to know which assumption is most appropriate. If D(p) represents the sum of the
 inelastic demands of heterogeneous consumers, then firms cannot easily influence the manner
 in which demand is rationed. The contingent demand curve then simply depends upon the
 arrival process of consumers at the lower-priced firm. This process is influenced by the
 location of consumers with respect to firms, the speed with which consumers gain price
 information, transportation costs and similar factors that are, for the most part, unaffected
 by firm behavior. In such a case the Beckmann contingent demand curve seems most
 appropriate, since it amounts to an assumption of symmetric treatment of consumers. The
 Kreps and Scheinkman curve, on the other hand, assumes that consumers with the highest
 reservation prices are always served first.

 When consumers have identical downward-sloping demand curves, however, firms
 may affect the contingent demand curve by limiting the number of units each consumer
 may purchase. We close this section by offering an informal argument that implies that
 when firms choose the rationing rule in a profit-maximizing way, the Beckmann contingent
 demand curve will emerge in equilibrium. This result, coupled with the fact that firms
 cannot influence the rationing of output among customers with inelastic demand curves,
 suggests that as long as a positive fraction of all consumers has downward-sloping demand,
 firm behavior will lead to Beckmann rationing.

 Consider, then, a three-stage game in which the first and third stages consist of capacity
 and price competition, respectively, as described above. In stage two, however, firms si-
 multaneously and independently announce a rationing rule that will be used when there is
 excess demand for their product (which, in equilibrium, only occurs when they are charging
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 the lower price). This rule is stated in the form of a function, Xi(pi) for firm i, which denotes
 the maximum number of units each consumer may purchase, as a function of its price. We

 wish to argue that in equilibrium both firms will choose Xi(pi) to be nonbinding. To see
 this suppose that K1 and K2 have already been chosen (in stage one) and that at least one

 of the firms has chosen a value for Xi(pi) that is less than D(pi) for some open set of pi's.
 By altering Xi(pi) firm i can affect the contingent demand curve faced by firm j in the third
 stage of the game. Higher values of Xi(pi) lead to more favorable residual demand curves,
 and therefore induce firm j to charge higher prices in the third stage. These higher prices
 benefit firm i, since it will be lower-priced more often. In addition, the equilibrium price

 or price distribution for firm i associated with the original functions Xi(p) and Xj(p) is no
 longer optimal. Adjusting its own price distribution clearly benefits firm i. This firm can

 therefore increase its profits by increasing Xi(p) and, in equilibrium, no limit will be placed
 on consumer purchases. As noted above, this amounts to the Beckmann contingent de-
 mand curve.

 3. Equilibrium with Beckmann rationing

 * In this section we proceed with the formal analysis of the two-stage game with our
 alternative rationing rule. Let us remind the reader briefly about the basic set-up.5 In the
 first stage firms independently and simultaneously choose capacity, which is available at a

 constant marginal cost of cl. Firms then simultaneously and independently quote a price
 and supply the demand they face at a constant marginal cost of c2, up to the capacities

 chosen in the first round. Without loss of generality we let c2 = 0. According to the Beckmann

 contingent demand assumption, demand for firm i's product as a function of pi, and for a

 given value of pj, is:

 D(pi) if Pi <p;

 D~p~jp) L~imax yD(pi)
 D(pilp)= min K, max 2 D(p) -Kj if pi=pj; (3)

 lmax O. D(pi) (1-D i))] if Pi>P>

 We find the subgame-perfect equilibria in behavioral strategies of the two-stage game
 by backward induction. First, we compute the Nash equilibria in prices for given capacity
 combinations. This yields reaction functions in capacity space, from which we can deduce
 the solution to the two-stage game.

 0 The price subgame. Let K1 and K2 denote the capacities chosen in the first stage, and
 assume without loss of generality that 0 < K1 < K2. Before describing the equilibria in the
 subgames, we place some minor restrictions on demand.

 Assumption 1. D(p) is differentiable and strictly decreasing in p.

 Assumption 2. There exists a po > 0 such that D(p) = 0 if p > po and D(p) > 0 if p < po,
 and D(O) < oo.

 Assumption 3. The revenue function, pD(p), is single peaked and attains a unique maximum
 at pm.

 Assumption 4. pD(p) is strictly concave for p < pm.

 S To our knowledge, the two-stage game was first suggested, in its current form, by Sherman ( 1972, p. 65 ff).

 To simplify the complex analysis involved, however, he reduced its formulation to a simple matrix game.
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 Hence, we assume a finite choke price, bounded demand, and a revenue function that

 has a unique peak, and is strictly concave to the left of this peak. Letting P( - ) be the inverse
 industry demand function so that P(K1 + K2) indicates the price that clears the market

 when both firms produce at capacity,6 we can now state the following theorem.

 Theorem 2. For each pair (K1, K2) with 0 < K1 < K2 there exists a unique Nash equilibrium
 in prices. If K1 > D(0), the equilibrium is in pure strategies with each firm's charging a price

 of zero and earning zero profits. If P(K1 + K2) > pm, the equilibrium is in pure strategies

 with each firm's charging P(K1 + K2) and earning profits of KjP(Kj + K2). Otherwise, the
 equilibrium is in nondegenerate mixed strategies. Moreover, equilibrium profits are contin-

 uous in K1 and K2.

 Existence of equilibrium in this type of game is nontrivial since D(pilpj) is not continuous
 at pi = pj. Fortunately, the (mixed-strategy) Nash equilibrium existence theorem of Dasgupta
 and Maskin (1986) for games exhibiting certain kinds of discontinuities covers our subgames.
 Their proof, however, is nonconstructive. In the Appendix we show how to compute the

 equilibria. Here we only provide an intuitive (but informal) discussion of the properties of
 the equilibrium.

 When K1 > D(0), each firm possesses enough capacity to serve the entire market, and
 hence the standard Bertrand result applies. When K1 < D(0), however, the large firm has
 an incentive to form a price umbrella under which the small firm can live. This is most
 easily seen when K1 is very small: in that case the large firm may as well ignore the lower-
 priced competitor since he is of insufficient size. Of course, a pure-strategy equilibrium of

 this type will not exist. The mixed-strategy solution, on the other hand, does have this
 feature: the large firm has a masspoint at the upper end of the support (the monopoly price)
 that becomes larger as K1 decreases. Finally, when both K1 and K2 are small (so that
 P(K1 + K2) > pm), the monopoly (for a monopolist with capacity K1 + K2), duopoly, and

 competitive equilibria coincide. All involve auctioning off all the output that can be produced.

 o Equilibrium in the full two-stage game. Subtracting the cost of capacity from the profit
 functions of the capacity-constrained subgame yields continuous payoff functions in the
 reduced game from which we can, in principle, calculate reaction functions. Unfortunately,
 for many capacity combinations the equilibria in the subgames occur in mixed strategies
 and, in such cases, no closed-form solutions for the profit functions are available.7 To gain
 some insight into the nature of the equilibrium, we solve numerically for the reduced-game
 profit function for the special case where demand is linear, which after an appropriate choice

 of units we can write as D(p) = 1 - p.

 We obtain the reaction function for firm i, K"* (Kj), by selecting the value of Ki that
 maximizes firm i's payoff (net of capacity cost) on the assumption that firm j installs Kj
 units of capacity. Any equilibria in the two-stage game that involve pure strategies in capacity8

 correspond to a pair (K*, Kt) such that K~I(Kj*) = K"* for i = 1, 2-in other words, an
 intersection point of the reaction curves (best-reply mappings).

 Figure 3 illustrates the case where cl = 0. Discontinuities in the reaction curves, caused
 by secondary maxima in the profit function, preclude the existence of symmetric equilibria

 when capacity is relatively cheap. For cl = 0, there is a unique pair of asymmetric solutions
 in behavioral strategies. They involve firms' choosing capacity levels roughly equal to .43

 6 When K1 + K2 > D(O), we define P(KI + K2) to be equal to zero.
 7 If oj(p) denotes the equilibrium price distribution for firm i and p denotes the lowest price in the sup-

 port of Oj(p), then k1(p) = 0 defines p implicitly (see the Appendix for details). Profits are then given
 by 7ri = p min (D(p), Kj). Unfortunately, itis the equation 01(p) = 0 that cannot be solved for analytically.

 8 It-is hard to imagine that firms would resort to randomization for such long-term choices as the technology
 to be adopted in production.
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 FIGURE 3

 REACTION FUNCTIONS IN THE BECKMANN GAME (cl =0)
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 and .86, so that one firm is approximately twice the size of the other. Both capacities exceed
 the Cournot-Nash levels chosen in the Kreps and Scheinkman game (.33). Profit for the
 large firm is roughly the same as it would be in the Cournot equilibrium, but the small

 firm's profits are considerably smaller (.056 versus .1 1 1). Joint profits are, therefore, sub-
 stantially lower than the Cournot model would predict. Finally, observe that the price-
 subgame corresponding to these capacities involves randomization over prices.

 Increasing the cost of capacity makes the payoff functions concave, shifts the reaction

 curves down, and causes the discontinuities to occur at smaller capacity levels. If the cost
 of capacity is large enough, the secondary maxima disappear, and the reaction functions
 become continuous, downward-sloping curves. In this case the solution is symmetric. The
 capacity levels still exceed those obtained in the Kreps and Scheinkman game, but the

 difference diminishes as cl increases. For instance, if cl = .1, equilibrium capacities of .34
 compare to the Cournot-Nash capacity of .30. Profits, however, are still considerably lower
 (.079 in the Beckmann game as compared with .09 in the Kreps and Scheinkman game),
 and firms continue to use mixed strategies in their pricing decisions. This remains true until
 the cost of capacity becomes so large that firms choose an aggregate capacity level below
 the level that a monopolist with zero marginal cost would choose.

 o Interpretation and discussion. At this point it is instructive to step back and consider
 what these results imply about the Kreps and Scheinkman result as well as what they mean

 on their own. First, we consider the Kreps and Scheinkman result. One would not expect
 a model in which the scale of operation is chosen before price competition takes place to
 duplicate the Cournot outcome exactly. From that perspective, the Kreps and Scheinkman
 result is merely an accident, but one might have hoped that equilibria in such games would

 be "sufficiently close" to the Cournot outcome to justify the widespread use of that model.
 In our opinion, however, when capacity is not overly expensive, equilibria may differ mark-
 edly from the Cournot outcome, both qualitatively and quantitatively. Plant sizes are much
 larger in the Beckmann game than in their Cournot counterpart, even if one takes into
 account a certain amount of "overcapacity" in the industry. The distribution of prices and
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 output may also be rather different. For instance, when cl = 0, there is a 92% chance in the
 Beckmann game that output is higher and that price is lower than the corresponding Cournot-

 Nash levels. Profits are substantially lower as well. This suggests that the equilibrium is

 more competitive than the Cournot model would predict. Finally, welfare results derived

 from a model in which Beckmann rationing is assumed are likely to differ from those

 obtained by using the Kreps and Scheinkman rule, since these rationing rules reflect different

 degrees of price discrimination.
 What then, can we say about the nature of equilibrium in markets in which capacity

 decisions are made before pricing decisions? First, the equilibrium is "more competitive"
 than the Cournot outcome. The Cournot equilibrium therefore places an upper bound on

 the degree of competitiveness in static models of such markets.9 Second, when capacity is
 relatively cheap, firms choose different scales of operation despite the fact that the model
 is symmetric. This suggests that there might be a natural tendency toward asymmetries in

 such markets.

 The third, and perhaps most interesting, result is that in equilibrium firms use mixed

 strategies when setting prices.'0 There are two interpretations of mixed strategies in the
 literature; the first is due to Varian (1980). While the competitive and Cournot models

 predict that firms will charge the same price, Varian notes that most markets are characterized

 by a large degree of price dispersion. He also points out that any model that yields equilibrium
 price dispersion in which firms use pure strategies seems to be a rather implausible explanation
 of the persistence of price dispersion, since one would expect consumers to learn about
 prices over time and stop frequenting high-priced stores. As an alternative, Varian presents
 a model in which firms use mixed strategies in equilibrium and interprets the price ran-
 domization as a strategy of having randomly chosen sales. If all firms use mixed strategies,
 then at any point in time the market would be characterized by price dispersion. This
 situation could easily persist, because owing to the intentional price fluctuations by each
 firm, consumers cannot learn anything about future prices from the observation of current

 prices. In Varian's model firms use mixed strategies (or sales) to price discriminate between
 informed and uninformed consumers. In our model the randomization allows firms to

 capture a greater share of consumer surplus.11
 The second interpretation is due to Harsanyi ( 1973), who demonstrated that the mixed-

 strategy equilibria of a game may be viewed as the limit of the pure-strategy equilibria of a
 related "disturbed game" as the disturbances vanish. The disturbed game is equivalent to

 the initial game, except that in the disturbed game each player's payoff function is subject
 to a small random disturbance, the value of which is known only to him. Thus, each player
 has exact information about his own payoff function, but has only imprecise knowledge of
 his opponents' payoff functions. Harsanyi shows that the pure-strategy equilibria of the

 disturbed game converge to the mixed-strategy equilibria of the initial game as the random
 disturbances go to zero. The mixed strategies that are used in our model may therefore be
 viewed as pure strategies emanating from a game of incomplete information in which firms'

 If the game is repeated, tacit or explicit collusion could lead to less competitive equilibria (Davidson and

 Deneckere, 1984).

 Unless, of course, capacity is very expensive.

 An anonymous Associate Editor has raised the following objection to the mixed strategies employed in this

 article and in Kreps and Scheinkman (1983). In any pure-strategy equilibrium firms never "regret" the price they

 charge ex post. This is a result of the fact that firm i faces no ex ante uncertainty about its competitor's price. Thus,

 once that price is revealed, the firm learns nothing of value and has no regret about the price it charged. In mixed-

 strategy equilibria, however, we only require that the firms are ex ante indifferent about charging any price in their

 support. Once firm i finds out what price its competitor is charging, it may want to change its own price (under

 the assumption that its competitor's price will not change). It can be argued, therefore, that we are assuming that

 consumers can respond to market prices faster than firms.

This content downloaded from 193.49.169.59 on Sun, 22 Dec 2019 11:42:15 UTC
All use subject to https://about.jstor.org/terms



 DAVIDSON AND DENECKERE / 413

 profit functions are subject to small random shocks (due, perhaps, to random fluctuations

 in the cost of production).12

 4. Conclusions

 * The Kreps and Scheinkman (1983) game has two alternative interpretations. In the

 first, cl is thought of as representing production costs (rather than capacity costs), and c2
 refers to distribution costs (rather than production costs). This produces a model very close

 in spirit to Cournot's original. Producers first make independent production decisions. After

 learning how much each produces, firms market their output by choosing price. In the

 Kreps and Scheinkman model firms find it optimal to compete the price down to the

 market-clearing level, and aggregate output coincides with its counterpart in a Cournot

 model with constant marginal cost cl + c2. Our results indicate that this result is not, in
 general, true. Firms may find it profitable to produce more, and settle at an equilibrium in
 which some produced output is left unsold.

 A second interpretation, apparently endorsed by Maskin and Tirole (1982), holds that

 quantity competition is merely a surrogate for long-run competition through the choice of
 technological scale. What we really mean when we say that a firm is choosing a production
 quantity is that it is choosing a long-run cost curve appropriate for that level. In the short
 run, competition occurs through price, but price policy and accompanying output decisions

 are not independent. They are jointly constrained by steeply rising costs beyond the normal
 scale of operation. While this interpretation "justifies" treating profit as a function of quantity,
 our results indicate that none of the specific predictions or welfare results of the Cournot
 model need hold.

 Appendix

 * First, we prove existence and uniqueness of the pure-strategy equilibria (Lemma 1 below). For those capacity
 combinations (K1, K2) for which no pure-strategy equilibria exist, we show how to compute equilibrium distributions.
 We then establish that the resulting distributions indeed form an equilibrium pair. The argument leading to uniqueness

 is rather involved; the interested reader is referred to Deneckere (1983) or Allen and Hellwig (1984).

 Lemma 1. In any pure-strategy equilibrium pi = P2 = P(K1 + K2). Moreover, pure-strategy equilibria exist if and
 only if K1, K2 > D(O) or P(K I + K2) > pm.

 Proof Assume first that pi < pj. Then pi must be less than P(Ki); if not, D(pj1pi) = 0. This yields an immediate
 contradiction ifpi > 0, for then firm j could undercut i and make positive profits. Ifpi = 0, then pj > 0 by assumption,
 and hence i could make positive profits by raising price. Thus, pi < P(Ki) and firm i earns p1Ki. Since the latter

 expression is increasing in pi, we have a contradiction. Thus, pi = pj = p in any pure-strategy equilibrium.
 In order that neither firm have an incentive to lower price below p, it must be that both sell at capacity, or

 p = P(K1 + K2) (if p < P(K1 + K2), firms could increase profits by raising price). If firm j raises its price pj above
 p, it earns

 pjD(pj) max (O. 1 - D(p)

 Neither firm will have an incentive to raise price only if D(p) < Ki Vi, in which case p = 0 and Ki > D(O) Vi, or if
 P(K1 + K2) > pm. Q.E.D.

 If (K1, K2) does not belong to the pure-strategy region indicated in Lemma 1, an equilibrium must be found
 in mixed strategies. Lemma 2 tells us how to calculate the equilibrium in this region.

 Lemma 2. Assume that K1 < D(O) and that (K1, K2) satisfy P(K1 + K2) < pm. Then there exists a unique pair of
 solutions (01, 02) to the following differential equations:

 -ko(p)Z3(p) + ( - k1j(p))Zi(p) = -iZ4(P) for i, j = 1,2 (A 1)

 with boundary conditions 01(pm) = 1, 02(P) = 0 that satisfy XI(P) = 0, and

 12 This interpretation suffers from the same "regret" properties discussed in footnote 11.
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 Zi(p) = d min [K,/D(p), 1] i= 1,2
 dp

 Z =(p) min 1m Kj ) K ,+K-D(p)]
 L )'~p' D(p) J

 D(p) + pD(p)
 Z4(P) = [pD(p)]2

 -xi = p min (D(p), Kj).

 Moreover, the pair (01, 02) is a solution to the subgame starting at (K1, K2).

 Proof First, let us show that 01 is a proper distribution function for any positive choice of 7r2. Observe
 that Zj(p) > 0 for i = 1, 2 and that Z4 and Z3 are positive on (P(K1 + K2), pm). Inspection of (Al) then re-
 veals that /'i(p) is strictly positive on this interval (except at P(K2), where it is not defined), and that 0'i(p) - oo
 as p -- P(KI + K2). Thus, p > P(KI + K2) is well defined and satisfies all the requirements of a distribution
 function, whatever the initial choice of -r2. Let us denote the dependence of p on 7r2 as p = g(ir2). One readily
 checks that P(KI + K2) < g( * ) < pm and that g is continuous (in fact, it is monotone). Hence, the function

 .p g(p min (D(p), K2)) is continuous and maps [P(K1 + K2), pm] into itself. By the Brouwer fixed-point theo-
 rem, r has a fixed point. In other words, there exists at least one p such that p = g(r2) and 7r2 = p min (D(p), K2)
 hold simultaneously.

 Next, we establish that there exists at most one such p, so that the conditions of Lemma 2 indeed determine

 a unique pair (01, 02). Letf1(p) be the solution to

 fA'(P)Z3(P) +fl(P)Z2(P) = -Z4(P)

 with boundary condition f1(pm) = 0. p will be unique if there exists a unique solution to the equation

 p min (D(p), K2)f1(p) = I

 that satisfies p < pm. Some elementary algebra reveals that the derivative of the left-hand side of this equation is
 negative for all p such that p min (D(p), K2)f1(p) s 1, which implies the desired property.

 To complete the proof of the first part of the lemma, we still need to establish that 02 is a proper distribution
 function. Since qY2 > 0 for all p in [p, pf] for which 02(P) < 1, we only need to show that lim 02(P) s 1. Assume

 to the contrary that k2(fi) = 1 for some fi s pm. First, we establish that if there exists a fp, then p < P(K2). The
 integrated form of (Al) is

 7ri = pD(p) max {0, 1 I dqj(Z) + p min {D(p), Kj}(l - o(p)). (A2)

 If p > P(K2), then (A2) becomes, for i = 1,

 I7r =p min {D(p),Ki} (1 - 02(P))A

 Evaluating this expression at p and fp, we obtain different values-a contradiction.

 Next, we show that q'2(P) < 0'(p) for all p E [p, P(K2)]. From (Al) we have

 -k'2(P)Z3(P) + (1 - r02(P))ZI(P) = - [-/'1(p)Z3(p) + (1 - 11(P))Z2(P)]-
 72

 Letting p p, we obtain

 0'2(P) = 1 W( + +ZI(P)p- -Z2(P)]
 - 72 -2 - Z3(p)

 Since p < P(K2) < P(KI), in1/n2 = K1/K2. Moreover, Zi(p) = d(K,/D(p))/dp, which implies that
 Zj(p) -(K1/K2)Z2(p) = 0. Thus, 02(P) <,O'2(p) and 02 < I forp close top. Repeating the same argument as above,
 we can show that 0'(p) < O'I(p) if 02(P) s i(p) and p < P(K2). Thus, 01 and k2 cannot intersect for p s P(K2),
 and so '2 < 01 on [p, P(K2)]. Since 02(P) = 1, there exists a p > P(K2) such that kI(p) = 02(P). Let p5 be any such
 intersection point. We shall now show that necessarily p s P(K2). Thus, the assumption 02(P) = 1 for some
 p^ < pm will lead to a contradiction.

 Define mi(p) = 1/7rin max {0, 1 - (Kj/D(Z))}dq5(Z). If p5 E [P(K2), P(KI) A pm), we have

 min (K1, D(p)) = K1 and min (D(fp), K2) = D(fi) < K2.
 From (A2) we have

 1 =pD(p)m1(P(K2)) +-P( - 02(P)) =pD(p)m2(p) + (1-(P)),
 7I1 In2
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 which implies that

 mI(P(K2)) - m2(JP) = [1 si(j7)] r2 rD()] <0.

 If p E [P(KI) A pm, pm),

 1 ==pD(p)mI(P(K2)) +-( - 1-02(P)) = pD(p)m2(p) + -( 1- 0(PA
 7r I 7r2

 which implies that

 m l(P(K2))-m2(J3) = [1 - <(k()]Kj <0.
 Lr2 1rj

 Furthermore, we have

 0 > ml(P(K2)) - m2() > ml(P(K2)) - m2() - -(10- (.)) >0.
 7r2

 This contradiction establishes that 02(Pm) < 1 if K2 > K1. This implies that the large firm always has a masspoint
 at the upper boundary of the support.

 To complete the proof of Lemma 2 we still need to show that profits are constant almost everywhere on the

 support, and lower everywhere else. We can easily check that since p > P(KI + K2), profits on the support are given
 in (A2), and hence are constant almost everywhere on [p, pfi). Profits for firm i, when p > pm, are

 pD(p) max (0, 1,-D(Z))doj(Z)

 which is decreasing in p since p > pm, and when p s p profits are

 p min (D(p), K1),
 which is increasing in p. Q.E.D.

 Finally, let us remark that the differential equations in (Al) are linear. A closed-form solution for the distribution

 functions is therefore available (parametrically in p). But the equation /I(p) = 0 is highly nonlinear, and we cannot
 obtain a closed-form solution for p.
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